MIPLIB 2010


Infeasible set

[Return to complete MIPLIB 2010 problem list]

Click here for legend of abbreviations and links to subsets

Status Name Sets C Rows Cols NZs Int Bin Con Objective AGG VBD PAR PAC COV CAR EQK BIN IVK KNA IKN M01 GEN
Easy ash608gpia-3col BIBP 24748 3651 74244 3651 Infeasible     X X                  
Easy enlight14 BI IP 196 392 1120 196 196 Infeasible                         X
Easy enlight16 IT IP 256 512 1472 256 256 Infeasible                         X
Easy enlight9 I IP 81 162 450 81 81 Infeasible                         X
Easy neos-785912 IBP 1714 1380 16610 1380 Infeasible   X   X         X        
Easy neos788725 IBP 433 352 4912 352 Infeasible   X X           X     X  
Easy neos-820146 ITBP 830 600 3225 600 Infeasible       X X X     X        
Easy neos-820157 ITBP 1015 1200 4875 1200 Infeasible   X X X X X     X        
Easy neos858960 ITBP 132 160 2770 160 Infeasible   X       X     X        
Easy neos-859770 IBP 2065 2504 880736 2504 Infeasible     X           X     X  
Easy ns1158817 I MBP 68455 1804022 2842044 66022 1738000 Infeasible       X   X     X X   X  
Easy ns1686196 IBP 4055 2738 68529 2738 Infeasible   X X X   X     X X   X  
Easy ns1702808 I MBP 1474 804 5856 666 138 Infeasible     X     X           X  
Easy ns1745726 IBP 4687 3208 90278 3208 Infeasible   X X X   X     X X   X  
Easy ns1766074 BIT MIP 182 100 666 90 10 Infeasible                     X   X
Easy ns1769397 IBP 5527 3772 117383 3772 Infeasible   X X X   X     X X   X  
Easy ns2118727 IR MBP 163354 167440 646864 159514 7926 Infeasible   X     X       X     X  
Easy p2m2p1m1p0n100 ITBP 1 100 100 100 Infeasible                   X   X  
Hard zib02 CIXBP 9049868 37709944 146280582 37709944 Infeasible   X X X   X              
Status Name Sets C Rows Cols NZs Int Bin Con Objective AGG VBD PAR PAC COV CAR EQK BIN IVK KNA IKN M01 GEN

Legend

Problem Status

Easy Easy - instance can be solved within one hour using a commercial solver
Hard Hard - instance has been solved, but is not considered easy
Open Open - optimal solution to instance is unknown

Instance Set List

BBenchmark set
CChallenge set
IInfeasible set
PPrimal set
UUnstable set
R Reoptimize set
T Tree set
XXXL - extra large instances

Problem Type List

BPBinary Program - All variables are binary
IP Integer Program - All variables are integer
MBP Mixed Binary Program - All variables are binary or continuous
MIPMixed Integer Program - Variables can be integer or continuous

Note: The problem types are used to partition the instances. Instances that match more than one type are grouped into the least general set.

Problem Feasibility List

Feasible Problems - a feasible solution is known
Infeasible Problems - the problem was proven to be infeasible
Unknown Feasiblility - no feasible solution is know, but the problem was not proven to be infeasible

Constraint Type Legend

AGGAggregation
VBDVariable Bound
PARSet Partition
PACSet Packing
COVSet Cover
CARCardinality
EQKEquality Knapsack
BINBin Packing
IVKInvariant Knapsack
KNAKnapsack
IKNInteger Knapsack
M01Mixed Binary
GENGeneralAll other constraint types

Note: If a constraint matches more than one type, it is counted for the one with highest priority (lowest number).
Scaling and negation of binary are applied to match constraint types.


Last Update July 31, 2019 by Gerald Gamrath
© 2019 by Konrad-Zuse-Zentrum für Informationstechnik Berlin (ZIB)
Imprint