| Name | p2m2p1m1p0n100 |
| Download | p2m2p1m1p0n100.mps.gz |
| Set Membership | Infeasible Tree |
| Problem Status | Easy |
| Problem Feasibility | Infeasible |
| Originator/Contributor | B. Krishnamoorthy, G. Pataki |
| Rows | 1 |
| Cols | 100 |
| Num. non-zeros in A | 100 |
| Num. non-zeros in c | 100 |
| Rows/Cols | 0.01 |
| Integers | |
| Binaries | 100 |
| Continuous | |
| min nonzero |Aij| | 6562 |
| max |Aij| | 14354 |
| min nonzero |cj| | 6562 |
| max |cj| | 14354 |
| Integer Objective | Infeasible |
| LP Objective | 80424 |
| Aggregation | |
| Variable Bound | |
| Set partitioning | |
| Set packing | |
| Set covering | |
| Cardinality | |
| Equality Knapsacks | |
| Bin packing | |
| Invariant Knapsack | |
| Knapsacks | 1 |
| Integer Knapsack | |
| Mixed 0/1 | 1 |
| General Cons. | |
| References |
A 0-1 knapsack problem constructed to be difficult