MIPLIB 2010


Unstable set

[Return to complete MIPLIB 2010 problem list]

Click here for legend of abbreviations and links to subsets

Status Name Sets C Rows Cols NZs Int Bin Con Objective AGG VBD PAR PAC COV CAR EQK BIN IVK KNA IKN M01 GEN
Open cdma CU MBP 9095 7891 168227 4235 3656 ? X X   X X     X X     X  
Hard ger50_17_trans CU MIP 499 22414 172035 18062 4352 7393.26                      X X
Easy harp2 UBP 112 2993 5840 2993 -7.38998e+07    X             X   X  
Open hawaiiv10-130 CUX MBP 1388052 685130 183263061 578444 106686 ? X X X X   X     X     X  
Easy momentum2 U MIP 24237 3732 349695 1 1808 1923 12314.1  X X           X     X X
Open nb10tb CU MIP 150495 73340 1172289 2756 14124 56460 ? X X   X       X X X   X  
Easy neos-1112782 U MBP 2115 4140 8145 2070 2070 5.72103e+11  X                   X  
Easy neos-1112787 U MBP 1680 3280 6440 1640 1640 5.65032e+11  X                   X  
Hard neos-1140050 CU MBP 3795 40320 808080 38640 1680 Infeasible     X                 X  
Easy neos-1225589 U MBP 675 1300 2525 650 650 1.23107e+09  X                   X  
Easy neos-520729 U MBP 31178 91149 322203 30708 60441 -1.385e+06X   X                 X  
Easy neos-799711 U MBP 59218 41998 147164 910 41088 -1.11702e+07X X   X   X           X  
Easy npmv07 U MBP 76342 220686 859614 1880 218806 1.0481e+11  X                   X  
Easy ns2017839 U MBP 54510 55224 317840 12 55212 7.70305e+13X X                   X  
Hard ns2122603 U MBP 24754 19300 77044 7588 11712 7.77001e+07  X                   X  
Easy ofi U MIP 422587 420434 1778754 11073 18632 390729 6.15538e+09X X X                 X  
Easy satellites2-60 CUR MBP 20916 35378 283668 34324 1054 -19X X X X   X     X     X  
Easy satellites3-40-fs CUR MBP 35553 81681 291161 79961 1720 -25X X X X   X           X  
Hard satellites3-40 CUR MBP 44804 81681 698176 79961 1720 -25X X X X   X     X     X  
Open splan1 CUX MIP 572800 1317382 5233840 1978 90810 1224594 ? X X   X   X     X X X X X
Easy transportmoment CU MBP 9616 9685 29541 2456 7229 -3.0631e+09X X                   X  
Status Name Sets C Rows Cols NZs Int Bin Con Objective AGG VBD PAR PAC COV CAR EQK BIN IVK KNA IKN M01 GEN

Legend

Problem Status

Easy Easy - instance can be solved within one hour using a commercial solver
Hard Hard - instance has been solved, but is not considered easy
Open Open - optimal solution to instance is unknown

Instance Set List

BBenchmark set
CChallenge set
IInfeasible set
PPrimal set
UUnstable set
R Reoptimize set
T Tree set
XXXL - extra large instances

Problem Type List

BPBinary Program - All variables are binary
IP Integer Program - All variables are integer
MBP Mixed Binary Program - All variables are binary or continuous
MIPMixed Integer Program - Variables can be integer or continuous

Note: The problem types are used to partition the instances. Instances that match more than one type are grouped into the least general set.

Problem Feasibility List

Feasible Problems - a feasible solution is known
Infeasible Problems - the problem was proven to be infeasible
Unknown Feasiblility - no feasible solution is know, but the problem was not proven to be infeasible

Constraint Type Legend

AGGAggregation
VBDVariable Bound
PARSet Partition
PACSet Packing
COVSet Cover
CARCardinality
EQKEquality Knapsack
BINBin Packing
IVKInvariant Knapsack
KNAKnapsack
IKNInteger Knapsack
M01Mixed Binary
GENGeneralAll other constraint types

Note: If a constraint matches more than one type, it is counted for the one with highest priority (lowest number).
Scaling and negation of binary are applied to match constraint types.


Last Update July 31, 2019 by Gerald Gamrath
© 2019 by Konrad-Zuse-Zentrum für Informationstechnik Berlin (ZIB)
Imprint