MIPLIB 2010


Primal set

[Return to complete MIPLIB 2010 problem list]

Click here for legend of abbreviations and links to subsets

Status Name Sets C Rows Cols NZs Int Bin Con Objective AGG VBD PAR PAC COV CAR EQK BIN IVK KNA IKN M01 GEN
Easy 30_70_45_095_100 P MBP 12526 10976 46640 10975 1 3  X     X       X     X  
Easy acc-tight4 PRBP 3285 1620 17073 1620 0  X X X X X     X     X  
Easy acc-tight5 BPRBP 3052 1339 16134 1339 0X X X X X X     X     X  
Easy acc-tight6 PRBP 3047 1335 16108 1335 0X X X X X X     X     X  
Easy bnatt350 BPRBP 4923 3150 19061 3150 0        X       X     X  
Easy ex10 PBP 69608 17680 1162000 17680 100  X X           X        
Easy ex9 BPBP 40962 10404 517112 10404 81  X X           X        
Easy lectsched-1 P IP 50108 28718 310792 482 28236 0X X                 X   X
Easy lectsched-2 P IP 30738 17656 186520 369 17287 0X X                 X   X
Easy lectsched-3 P IP 45262 25776 279967 457 25319 0X X                 X   X
Easy m100n500k4r1 BPBP 100 500 2000 500 -25      X                  
Easy neos-1171692 P MBP 4239 1638 42945 819 819 -273  X             X     X  
Easy neos-1171737 P MBP 4179 2340 58620 1170 1170 -195  X   X               X  
Easy neos-1224597 P IP 3276 3395 25090 245 3150 -428  X X X   X     X X   X X
Easy neos-1440225 PBP 330 1285 14168 1285 36    X                    
Easy neos-506422 P MBP 6811 2527 31815 63 2464 0  X X                 X  
Easy neos-555424 P IP 2676 3815 15667 15 3800 1.2868e+06  X     X   X   X     X X
Easy neos-693347 P MBP 3192 1576 113472 1405 171 234  X X X   X           X  
Easy neos6 P MBP 1036 8786 251946 8340 446 83      X X       X X   X  
Easy neos-738098 P MBP 25849 9093 101360 8946 147 -1099  X X X   X X X X     X  
Easy neos-777800 PBP 479 6400 32000 6400 -80  X   X   X              
Easy neos808444 PBP 18329 19846 120512 19846 0X X X X     X   X     X  
Easy neos-824661 P MBP 18804 45390 138890 15640 29750 33    X     X   X       X  
Easy neos-824695 P MBP 9576 23970 72590 8500 15470 31    X     X   X       X  
Easy neos-826694 P MBP 6904 16410 59268 16290 120 58X     X   X   X X     X  
Status Name Sets C Rows Cols NZs Int Bin Con Objective AGG VBD PAR PAC COV CAR EQK BIN IVK KNA IKN M01 GEN
Easy neos-826812 P MBP 6844 15864 53808 10350 5514 58.011X         X   X       X  
Easy neos-849702 BPBP 1041 1737 19308 1737 0    X X   X     X        
Easy neos-885086 P MBP 11574 4860 248310 2430 2430 -243  X   X               X  
Easy neos-885524 PBP 65 91670 258309 91670 12320.1                      X  
Easy neos-932816 P MBP 30823 21007 484926 20566 441 15376  X   X         X     X  
Easy neos-933638 P MBP 13658 32417 187173 28637 3780 276  X   X         X     X  
Easy neos-933966 P MBP 12047 31762 180618 27982 3780 318  X   X         X     X  
Easy neos-935627 PR MBP 7859 10301 40476 7522 2779 2598  X   X         X     X  
Easy neos-935769 P MBP 6741 9799 36447 7020 2779 3010  X   X         X     X  
Easy neos-937511 P MBP 8158 11332 44237 8562 2770 3510  X   X         X     X  
Easy neos-941313 PBP 13189 167910 484080 167910 9361    X X X X     X X   X  
Easy neos-957389 PBP 5115 6036 355372 6036 1.5  X X X       X X X      
Easy ns1116954 P MBP 131991 12648 410582 7482 5166 0  X X X   X   X   X   X  
Easy ns1952667 P IP 41 13264 335643 13264 0                    X   X
Easy triptim1 BP MIP 15706 30055 515436 9597 20451 7 22.8681X X   X X       X       X
Status Name Sets C Rows Cols NZs Int Bin Con Objective AGG VBD PAR PAC COV CAR EQK BIN IVK KNA IKN M01 GEN

Legend

Problem Status

Easy Easy - instance can be solved within one hour using a commercial solver
Hard Hard - instance has been solved, but is not considered easy
Open Open - optimal solution to instance is unknown

Instance Set List

BBenchmark set
CChallenge set
IInfeasible set
PPrimal set
UUnstable set
R Reoptimize set
T Tree set
XXXL - extra large instances

Problem Type List

BPBinary Program - All variables are binary
IP Integer Program - All variables are integer
MBP Mixed Binary Program - All variables are binary or continuous
MIPMixed Integer Program - Variables can be integer or continuous

Note: The problem types are used to partition the instances. Instances that match more than one type are grouped into the least general set.

Problem Feasibility List

Feasible Problems - a feasible solution is known
Infeasible Problems - the problem was proven to be infeasible
Unknown Feasiblility - no feasible solution is know, but the problem was not proven to be infeasible

Constraint Type Legend

AGGAggregation
VBDVariable Bound
PARSet Partition
PACSet Packing
COVSet Cover
CARCardinality
EQKEquality Knapsack
BINBin Packing
IVKInvariant Knapsack
KNAKnapsack
IKNInteger Knapsack
M01Mixed Binary
GENGeneralAll other constraint types

Note: If a constraint matches more than one type, it is counted for the one with highest priority (lowest number).
Scaling and negation of binary are applied to match constraint types.


Last Update July 31, 2019 by Gerald Gamrath
© 2019 by Konrad-Zuse-Zentrum für Informationstechnik Berlin (ZIB)
Imprint