Name | seymour |
Download | seymour.mps.gz |
Solution | seymour.sol.gz |
Set Membership | Challenge |
Problem Status | Easy |
Problem Feasibility | Feasible |
Originator/Contributor | W. Cook, P. Seymour |
Rows | 4944 |
Cols | 1372 |
Num. non-zeros in A | 33549 |
Num. non-zeros in c | 1372 |
Rows/Cols | 3.60349854227 |
Integers | |
Binaries | 1372 |
Continuous | |
min nonzero |Aij| | 1 |
max |Aij| | 1 |
min nonzero |cj| | 1 |
max |cj| | 1 |
Integer Objective | 423 |
LP Objective | 403.846474 |
Aggregation | |
Variable Bound | 285 |
Set partitioning | |
Set packing | |
Set covering | 4542 |
Cardinality | |
Equality Knapsacks | |
Bin packing | |
Invariant Knapsack | 4542 |
Knapsacks | |
Integer Knapsack | |
Mixed 0/1 | |
General Cons. | |
References |
A set-covering problem that arose from work related to the proof of the 4-color theorem.