| Name | seymour |
| Download | seymour.mps.gz |
| Solution | seymour.sol.gz |
| Set Membership | Challenge |
| Problem Status | Easy |
| Problem Feasibility | Feasible |
| Originator/Contributor | W. Cook, P. Seymour |
| Rows | 4944 |
| Cols | 1372 |
| Num. non-zeros in A | 33549 |
| Num. non-zeros in c | 1372 |
| Rows/Cols | 3.60349854227 |
| Integers | |
| Binaries | 1372 |
| Continuous | |
| min nonzero |Aij| | 1 |
| max |Aij| | 1 |
| min nonzero |cj| | 1 |
| max |cj| | 1 |
| Integer Objective | 423 |
| LP Objective | 403.846474 |
| Aggregation | |
| Variable Bound | 285 |
| Set partitioning | |
| Set packing | |
| Set covering | 4542 |
| Cardinality | |
| Equality Knapsacks | |
| Bin packing | |
| Invariant Knapsack | 4542 |
| Knapsacks | |
| Integer Knapsack | |
| Mixed 0/1 | |
| General Cons. | |
| References |
A set-covering problem that arose from work related to the proof of the 4-color theorem.