| Name | gmut-77-40 |
| Download | gmut-77-40.mps.gz |
| Solution | gmut-77-40.sol.gz |
| Set Membership | Challenge |
| Problem Status | Hard |
| Problem Feasibility | Feasible |
| Originator/Contributor | N. Konnyu |
| Rows | 2554 |
| Cols | 24338 |
| Num. non-zeros in A | 159902 |
| Num. non-zeros in c | 12848 |
| Rows/Cols | 0.104938778864 |
| Integers | |
| Binaries | 24332 |
| Continuous | 6 |
| min nonzero |Aij| | 0.95 |
| max |Aij| | 6064.613 |
| min nonzero |cj| | 2659.124 |
| max |cj| | 292394.5 |
| Integer Objective | -14172045.4419852 |
| LP Objective | -14173396.636852 |
| Aggregation | |
| Variable Bound | 25 |
| Set partitioning | |
| Set packing | 2522 |
| Set covering | |
| Cardinality | |
| Equality Knapsacks | |
| Bin packing | |
| Invariant Knapsack | |
| Knapsacks | |
| Integer Knapsack | |
| Mixed 0/1 | 7 |
| General Cons. | |
| References |
Timber harvest scheduling model. Solved by ParaXpress in a 12288 core supercomputer run on HLRN III.