| Name | gmut-75-50 |
| Download | gmut-75-50.mps.gz |
| Solution | gmut-75-50.sol.gz |
| Set Membership | Challenge |
| Problem Status | Hard |
| Problem Feasibility | Feasible |
| Originator/Contributor | N. Konnyu |
| Rows | 2565 |
| Cols | 68865 |
| Num. non-zeros in A | 571475 |
| Num. non-zeros in c | 35909 |
| Rows/Cols | 0.0372467871923 |
| Integers | |
| Binaries | 68859 |
| Continuous | 6 |
| min nonzero |Aij| | 0.95 |
| max |Aij| | 7718.262 |
| min nonzero |cj| | 2675.149 |
| max |cj| | 373830 |
| Integer Objective | -14180699.047 |
| LP Objective | -14182312.661731 |
| Aggregation | |
| Variable Bound | 18 |
| Set partitioning | |
| Set packing | 2540 |
| Set covering | |
| Cardinality | |
| Equality Knapsacks | |
| Bin packing | |
| Invariant Knapsack | |
| Knapsacks | |
| Integer Knapsack | |
| Mixed 0/1 | 7 |
| General Cons. | |
| References |
Timber harvest scheduling model. Solved by ParaXpress in a 12288 core supercomputer run on HLRN III.