| Name | gmu-35-50 |
| Download | gmu-35-50.mps.gz |
| Solution | gmu-35-50.sol.gz |
| Set Membership | Tree |
| Problem Status | Easy |
| Problem Feasibility | Feasible |
| Originator/Contributor | N. Konnyu |
| Rows | 435 |
| Cols | 1919 |
| Num. non-zeros in A | 8643 |
| Num. non-zeros in c | 1022 |
| Rows/Cols | 0.226680562793 |
| Integers | |
| Binaries | 1914 |
| Continuous | 5 |
| min nonzero |Aij| | 0.8 |
| max |Aij| | 2574.305 |
| min nonzero |cj| | 2694.614 |
| max |cj| | 232602 |
| Integer Objective | -2607958.33 |
| LP Objective | -2608070.315743 |
| Aggregation | |
| Variable Bound | 16 |
| Set partitioning | |
| Set packing | 406 |
| Set covering | |
| Cardinality | |
| Equality Knapsacks | |
| Bin packing | |
| Invariant Knapsack | |
| Knapsacks | |
| Integer Knapsack | |
| Mixed 0/1 | 13 |
| General Cons. | |
| References |
Timber harvest scheduling model