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Abstract.

1. Introduction

(Rainer & alle)

1.1. Related Work.

1.2. Our contribution.

1.3. Outline of the paper.

2. Modeling the Dynamics of Opinions and Their Control

We are interested in opinions that can be represented by mathematical entities. There may
be many ways to transform opinions about every conceivable topic into more or less complicated
mathematical structures.

In this paper, we will restrict ourselves to the arguably simplest case where an opinion of an
individual i ∈ I can be represented by a real number xi in the unit interval [0, 1]. This can
be an opinion about a real quantity measured in percent of a reasonably restricted range (e.g.,
where is the economic growth of a country next year between −2% and 6%), or it may be an
opinion about the range between extreme positions (e.g., where should be the balance between
free markets and public control).

The opinions may change over time subject to a certain system dynamics: We assume that
time is discretized into stages T := {0, 1, 2, . . . , N}. The opinion of individual i ∈ I in stage t ∈ T
is denoted by xti . We call, as usual, the vector xt := (xti)i∈I the state of the system in Stage t.
The system dynamics ft is a vector valued function that computes the state of the system xt+1

as xt+1 := ft(xt).
Depending on how ft is defined, we obtain different models of opinion dynamics. In this paper,

we will only consider so-called stationary models, where ft does not depend on the Stage t.
Therefore, from now on, we will drop the superscript t from the notation and write f for the
system dynamics.

2.1. The Average Model. The motivation for this model is that each individual is in contact
with each other in every stage, and each opinion is influenced by each other (including itself) by
the same amount. The mathematical model for this is to define f as the arithmetic mean of all
opinions.

This is boring because after the first stage all opinions are equal (consensus).
1
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2.2. The Lehrer-Wagner Model. In this model, each individual is again in contact with each
other in every stage. The strengths of the influences of opinions on other opinions are given by
strictly positive weights wij with

∑
j∈Iwij = 1 for all i ∈ I, with the meaning that the opinion

of individual i is influenced by the opinion of individual j with weight wij. The mathematical
formulation of this is to define f = (fi)i∈I as a weighted arithmetic mean in the following way:

fi(x1, . . . , xn) :=
∑
j∈I
wijxj (1)

It can be shown that this, in the limit, leads to consensus as well.1 It leads, as we will see
below, still to an interesting optimal control problem.

2.3. The Bounded-Confidence Model. The motivation for this model is that our individuals
ignore too distant opinions of others. Formally, we fix once and for all an ε ∈ (0, 1), and each
individual is influenced only by opinions that are no more than ε away from his or her own
opinion. We call [xti − ε, xti + ε] the confidence interval of individual i in Stage t. Let the
confidence set Ii(x1, . . . , xn) of individual i ∈ I in state x = (x1, . . . , xn) be defined as

Ii(x1, . . . , xn) := {j ∈ I : |xj − xi| 6 ε} . (2)

Then the system dynamics of the bounded confidence model is given as follows:

fi(x1, . . . , xn) :=
1

|Ii(x1, . . . , xn)|

∑
j∈Ii(x1,...,xn)

xj. (3)

This system dynamics is mathematically extremely interesting because it is not even contin-
uous. It can be argued about whether it makes sense that confidence is dropped completely at a
very sharp point in opinion space or whether a more continuous transition should be chosen. Our
personal experience is that it actually happens that all of a sudden, because of some event, we
lose our faith in some person; this supports the non-continuous characteristics of the bounded-
confidence model. A possible extension might be a stochastic disturbance on ε, but, as we will
see, bounded-confidence is still far from being completely understood. Therefore, in this paper
bounded confidence will be in the main focus.

2.4. A New Opinion Control Model. Given a dynamical system as above, we can of course
think about the possibility of a control, that can influence the system dynamics. Formally, this
means that the system dynamics f depends also on some additional exogenously provided data
u, the control.

The easiest way to think about opinion control is to carefully state an opinion in front of all
individuals so that the new opinion takes part in influencing all the individuals opinion. Formally,
the controller can place one or more additional opinions in the opinion space in order to guide the
individuals opinions in a specified direction. One possible interpretation of this to place suitable
statements in the stages of a marketing campaign in order to convince as many customers as
possible to buy the product rather than the competition; another is to present political speeches
with consciously designed opinions during the stages of an election campaign in order to get as
many votes as possible, i. e., the opinions of as many as possible voters are closer to the party
than to the competition.

Formally, this means in the simplest case (and we will restrict to this case) that the controller
can present an additional opinion ut in every stage that takes part in the opinion dynamics. The
corresponding system dynamics, taking the control as an additional argument, are then given as
follows (with x0 := u and I0 := I ∪ {0} as well as wij this time with

∑
j∈I0 wij = 1 for easier

notation):

1This is an easy consequence of the Banach Fixed Point Theorem, since this dynamics is a contraction.
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fi(x0; x1, . . . , xn) :=
∑
j∈I0

wijxj (Lehrer-Wagner-Control)

fi(x0; x1, . . . , xn) :=
1

|Ii(x0, x1, . . . , xn)|

∑
j∈Ii(x0,x1,...,xn)

xj. (Bounded-Confidence-Control)

We can interpret this as a usual model of opinion dynamics with an additional opinion x0
that can be positioned freely in every stage by the controller.

We still have to formalize what the goal of the controller is. In marketing or politics it would
be desirable that after a certain number of stages as many opinions as possible are closer to a
target opinion (favor the product over the competition, vote for the party) than to competing
opinions. In the case of fixed target opinions and fixed competing opinions this can always be
expressed as follows: Control opinions in a way such that after N stages there are as many
opinions as possible in a given interval[`, r] ⊆ [0, 1].

To formalize this, fix an interval [`, r] (the conviction interval), and let the conviction set
J(x1, . . . , xn) denote the set of all individuals j ∈ I with xj ∈ [`, r]. We want to maximize the
number of convinced individuals. Thus, the problem we want to investigate is the following
deterministic discrete-time optimal control problem:

max
x0

0,x
1
0,...,x

N−1
0

|J(xN1 , . . . , x
N
n )|

subject to

xt+1i = fi(x
t
0; x

t
1, . . . , x

t
n) ∀t = 0, 1, . . . , N− 1, (System Dynamics)

xt0 ∈ [0, 1] ∀t = 0, 1, . . . , N− 1, (Control Restrictions)

where f = (fi)i∈I is one of the controlled system dynamics in Equations (Lehrer-Wagner-Control)
and (Bounded-Confidence-Control), resp.

2.5. Our Benchmark Example. We now design a special instance of our optimal control
problem that serves as our benchmark for computational investigations. We are given eleven
individuals with starting opinions 0, 0.1, 0.2 . . . , 0.9, 1. Our conviction interval is the interval
[0.375, 0.625]. The goal is to maximize the number of convinced individuals in stage 1, 2, . . . , 10,
resp.

We will see, that even for this innocent-looking example we were not able to find the optimal
number of convinced individuals for all numbers of stages between 1 and 10.

3. Simulation and Pitfalls from Numerical Mathematics

In this section we want to convince the reader from the fact that the numerical inaccuracies
even in a simple simulation of the bounded confidence model (as opposed to the Lehrer-Wagner
model) have drastic effects on the results observed. The only way for us to cope with this problem
is to resort to exact rational arithmetic’s throughout, although there may be more sophisticated
methods to improve efficiency. This numerical instability has the more serious consequence that
of-the-shelf optimization algorithms with floating point arithmetic’s can not be used without
checking the results for correctness in exact arithmetics.

Let us start with an example of 6 individuals with opinions being regularly distributed at the
positions 0.0, 0.2, . . . , 1.0 with ε = 0.2. For a moment we forget on controlling the opinion
dynamics and focus on the consensus process. Since there is a mirror symmetry to opinion 0.5
and we assume no external control that might destroy this symmetry there should be such a
symmetry in each stage.
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Using exact arithmetic we obtain that the opinions of our individuals are given by

x0 = (0.0, 0.2, 0.4, 0.6, 0.8, 1.0),

x1 = (0.1, 0.2, 0.4, 0.6, 0.8, 0.9),

x2 = (0.15, 0.23, 0.4, 0.6, 0.76, 0.85),

x3 = (0.1916, 0.261, 0.41, 0.58, 0.738, 0.8083)

=

(
23

120
,
47

180
,
37

90
,
53

90
,
133

180
,
97

120

)
,

x4 =

(
163

720
,
311

1080
,
227

540
,
313

540
,
769

1080
,
557

720

)
,

x5 =

(
673

2160
,
673

2160
,
3271

8640
,
5369

8640
,
1487

2160
,
1487

2160

)
,

x6 =

(
577

1728
,
577

1728
,
577

1728
,
1151

1728
,
1151

1728
,
1151

1728

)
=

(
0.333912037, 0.333912037, 0.333912037, 0.666087962,

0.666087962, 0.666087962
)
,

A computational desaster: 0.2ε = , 6 regularly distributed opinions 

Delphi4 gets the result 
that 0.6 0.4 0.2− >  !

Figure 1. A computational desaster.

With the computation at hand we can see that this simple example leads to a quite complex
dynamic outlasting 6 stages before ending in a consensus of two different opinions. In Figure 1
we have depicted what a Delphi programm makes out of this tiny innocent looking example.
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We observe several things. The plot of Figure 1 seems not to correlate with the exact numbers
in any sense. The Delphi program determines two different opinions in the consensus which is
attained after only three stages. There is another interesting detail hidden in the graphics. At the
starting stage individual 3 is influenced by individuals 2, 3, and 4, but individual 4 is influenced
by individuals 4 and 5. So the influence is asymmetric. Individual 4 influence individual 3 but
individual 3 does not influence individual 4. Clearly such an inconsistency could easily be avoided
by determining influence variables ci,j which are equal to 1 is i influences j and 0 otherwise. The
symmetry could be forced by setting cij = cji. So the last observation is a nasty pitfall one
might step into, which could on the other hand be easily avoided. You may ask yourself how
you would implement the described dynamics in your favorite programming language. Just for
fun you may check whether |xi − xj| 6 ε always gives the same result as |xj − xi| 6 ε if you
implement the dynamics more directly.

On the other hand the definition of the bounded confidence model requests hard decision as
|xi−xj| 6 ε or |xi−xj| > ε. It is very common to use floating point numbers in those simulations.
If the functional equations behave very continuous nothing is wrong about that. Unfortunately
in our situation the dynamics is very discontinuous. A small jiggle on one of the intermediate
results may end in such drastic effects as Figure 1 compared to the real result. The only patch
that came to our mind which was capable of dealing with the numerical instability was to use
exact arithmetic. This means that we represent all numbers as fractions where the numerator
and the denominator are integers with unlimited accuracy. We remark that we have used the
Class Library of Numbers (CLN) a C++-package, but similar packages should be available also
for your favorite programming languages.

In the starting phase of our investigation in optimal control of opinion dynamics we have also
used floating point arithmetic for a short time period. By some spontaneous guesses we came
up with the control

[0.35, 0.3875, 0.775, 0.439583, 0.656771, 0.618083, 0.588083, 0.558083, 0.550413, 0.504684].

Our computer program tells us that we would achieve 10 convinced individuals by applying
this control vector on the benchmark problem of Subsection 2.5. This would have been rather
good, since i. e. a genetic algorithm achieves only 9 convinced individuals, see Subsection 6.2.
Unfortunately a recalculation using exact arithmetic yields only 4 convinced individuals, which
is a rather bad control. We have made similar experiences with all considered heuristics or
algorithms being described in this article.

There a quite a lot of articles dealing with the simulation of the bounded confidence model.
To our knowledge none of these mentioned the use of exact arithmetic. So one could assume
that the authors have used ordinary floating point numbers with limited precision for there
considerations. It is an interesting question whether all of these obtained results remain more or
less the same if being recalculated with exact arithmetic.

• Examples (with graphics) for numerical instability (Rainer,Sascha)
• Comparison with Lehrer-Wagner (Rainer)

4. Basic Structural Properties of Optimal Controls

In this section we collect some basic facts about structural properties of optimal controls.
First of all we mention that one or usually a whole set of optimal controls do exist. The number
of convinced individuals is in any stage trivially bounded from above by the total number of indi-
viduals |I|. So to every control there corresponds a bounded integer valued number of convinced
individuals.

The next thing we observe is that given enough time (number of stages) we could always
achieve this upper bound of |I| convinced individuals. Therefore we may determine the index i
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of the individual with the leftmost opinion and place the control at xi + ε in every stage. After
a finite number of stages all individuals have the same opinion. After this preparing period we
can move the whole set of individuals I by an amount between 0 and ε

|I|+1 in every direction we
like. So again after a finite number of stages all individuals are in the conviction interval. After
that time point we could simply place the control x0 directly on the opinion xi of all individuals.
We remark that one might consider some subtlety which may occur if xi + ε > 1. In this case
we simply set x0 = 1. An easy estimation yields that after at most 2 + 2

(|I|+1)·ε stages all |I|

individuals have an opinion in the conviction interval. By setting [l, r] = [0, 0] and x0i = 1 for all
i ∈ I we easily see that this estimation gives the right order of magnitude.

The opinion control in the bounded confidence model, as introduced here, is somewhat to
hard to be analyzed analytically at our current state of knowledge. Therefore we introduce a
slightly modification of the problem which seems to be a bit easier. So far we had a conviction
interval [l, r]. Now we restrict ourselves to intervals of the form [l, 1] or [0, r]. So the problem
becomes something like a rope-pulling game with center c. Let assume that we have the very
special case where all individuals have the same opinion and let us denote the distance |xi − c|
between the center of the rope-pulling game and the opinion of the individuals by δ. If there are
r > δ

(|I|+1)·ε stages left, then all |I| individuals can be convinced by an optimal control, otherwise
no individual can be convinced after r stages. This fact can be seen easily as follows. Whatever
our vector of controls is, all pairs of individuals (i, j) will have equal opinions xti = xtj for ever
stage t ∈ N. By suitably placing the control we can move the opinion of all individuals by an
amount between 0 and ε

|I|+1 in every direction we like. Thus we have

xti ∈
[
max

(
x0i − t · ε

|I| + 1
, 0

)
,min

(
x0i + t · ε

|I| + 1
, 1

)]
and each value of this interval could be achieved by xti . For the more general case of an arbitrary
conviction interval we have only to check if it intersects with the stated interval.

We remark that it is possible, in principle, to analyze the situation for at least |I| = 2 com-
pletely. If we manage to present it in a readable way this will be part of a forthcoming article.

5. A Mathematical Model for the Optimal Control Problem

In this section we describe a mathematical model, namely a mixed integer linear programming
model (MILP), for our optimal control problem. This serves two purposes:

• By reducing the number of periods in the model, we can exactly solve the model. This
allows us to employ a receding-horizon heuristic to the original problem.

• The model allows for the computation of performance bounds, in our case upper bounds
on the number of supporters that can be gathered in the final state by any control.

The model is — not surprisingly — much more powerful in the Lehrer-Wagner model than in
the bounded-confidence model; the former takes profit of the linear system dynamics whereas the
latter suffers a lot from the highly non-continuous system dynamics and the numerical instability.
More specifically, our model is not able to represent the original problem exactly. We will provide,
however, actually two models: one is correct in the sense that every upper bound on the objective
value of the model is an upper bound on the optimal number of convinced individuals in the
original problem (but possibly not vice versa); the other one is correct in the sense that any
feasible solution to it is a feasible solution to the original problem (but possibly not vice versa).

Why do we choose a MILP formulation as a model? Our original problem does not look like
a mixed integer problem at all. Well, MILP is at least able to capture combinatorial structures
like the confidence set or the conviction set, and the objective value of mixed integer programs is
in general not continuous in the input data. After all, frankly speaking, we had no better idea.
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The motivation for using integral variables in a model for our optimal control problem is that
the dynamics mainly depends on the structures of the confidence sets and the conviction sets:
We can use binary variables to indicate how the conviction sets and the confidence sets, resp.,
look like.

Since the bounded confidence model requires some experience in modeling with MILPs, we
start with a model for the Lehrer-Wagner optimal control problem. Later on, when the main
principles are explained, we will present a model for the bounded-confidence case.

5.1. MILP Model for the Lehrer-Wagner Optimal-Control Problem. The following sim-
ple model is quite a standard strategy in MILP. We first list the variables of the model.

• The continuous variables xt0 ∈ [0, 1], t = 0, 1, . . . , N − 1 denote the positions in opinion
space where we place a control in the various stages; these are the variables that we are
really after.

• The continuous variables xti ∈ [0, 1], i ∈ I, t = 0, 1, . . . , N denote the positions of the
individuals in the various stages; these variables measure the system states. The variables
in Stage 0 are given as input data (start state).

• For each individual, we want to measure whether its position in Stage N is inside the
conviction interval; to this end, we use binary variables zi ∈ {0, 1}, i ∈ I, with the
following meaning: zi = 1 if and only if i is convinced in Stage N, i.e., xNi ∈ [`, r].

With this, we may formulate the goal of the model: we want to maximize the number of
convinced individuals, which can be expressed as follows:

max
∑
i∈I
zi (4)

Now, the success measuring variables zi have to be coupled with our decisions xt0 via the system
states and the system dynamics. The following linear side constraint couples the decisions to
the system states:

xt+1i =
∑
i∈I0

wijx
t
j for all i ∈ I, t = 0, 1, . . . , N− 1. (5)

So far, we did not restrict the binary variables. A solver would simply set the all to 1 and
achieve an objective value of n (all convinced), because the binary variables so far have nothing
to do with the underlying dynamical system.

The binary variables can now be coupled to the system state variables in StageN by a standard
MILP modeling trick as follows. The logical implication must be: If zi = 1, i.e., if we want to
count an individual as convinced, then ` 6 xNi 6 r must hold. In other words, the inequalities
` 6 xNi 6 r can be violated when zi = 0, but they must be satisfied whenever zi = 1.

We show the trick for the inequality ` 6 xNi , the other inequality can be handled analogously.
The maximal violation of the inequality ` − xNi 6 0 is `, since ` − x 6 ` for all x ∈ [0, 1]. That
means, the inequality `− xNi 6 ` does trivially hold, no matter where xNi is in [0, 1]. We want to
impose the trivial inequality `−xNi 6 ` whenever zi = 0 and the non-trivial inequality `−xNi 6 0

whenever zi = 1. But this can be achieved in one step by imposing the inequality

`− xNi 6 `(1− zi) for all i ∈ I. (6)

The analogously derived inequality for the right border of the conviction interval reads

xNi − r 6 (1− r)(1− zi) for all i ∈ I. (7)
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The complete MILP reads as follows:

max
∑
i∈I
zi (8a)

subject to

xt+1i =
∑
i∈I0

wijx
t
j for all i ∈ I, t = 0, 1, . . . , N− 1 (8b)

`− xNi 6 `(1− zi) for all i ∈ I (8c)

xNi − r 6 (1− r)(1− zi) for all i ∈ I. (8d)

These types of MILPs can be solved quite efficiently by of-the-shelf software like ILOG cplex.
In particular, solving our benchmark problem for any number of stages between 1 and 10 is
absolutely no problem. We will present computational results later in this paper.

5.2. MILP Model for the Bounded-Confidence Optimal-Control Problem. A MILP for
the Bounded-Confidence dynamics can be designed by essentially applying the modeling trick
for counting the convinced individuals over and over again. This leads to a model that, in our
experience, could not even be solved by ILOG cplex for our benchmark problem for N = 3.

We have found a MILP with a larger number of variables that could be solved by ILOG cplex
for our benchmark problem up to N = 5. We will present this model in the following without
going into too much detail.

For our model, we assume that all individuals are numbered according to their starting opinion,
i.e., i < j implies x0i 6 x0j for i, j ∈ I.

Observation 5.1. The order of individuals in opinion space does not change, i.e.,f xti 6 xtj for
some i, j ∈ I and some t = 0, 1, . . . , N− 1, then xt+1i 6 xt+1j .

The model uses the following variables:
• The control variables xt0, t = 0, 1, . . . , N− 1 are as above.
• Similarly, the state variables xti , i ∈ I, t = 0, 1, . . . , N are as above.
• For jmin, jmax ∈ I and l, r ∈ {0, 1}, we introduce variables vti,(jmin,jmax;l,r) where vti,(jmin,jmax;l,r) =

1 if and only if the following holds: Individual jmin is the minimal index of an individual
in the confidence interval of i, Individual jmax is the maximal index of an individual in
the confidence interval of i, Index l = 1 if and only if xt0 > xti − ε (i.e., the control is
not to the left of the confidence interval of individual i), and Index r = 1 if and only
if xt0 6 xti + ε (i.e., the control is not to the right of the confidence interval of individ-
ual i). In particular, all variables vti,(jmin,jmax;0,0) must be zero. The motivation for these
variables is that they are indicating the unique combinatorial confidence configuration
(jmin, jmax; l, r) of an individual: If vti,(jmin,jmax;l,r) = 1 then we know by Observation 5.1
that all individuals j ∈ I with jmin 6 j 6 jmax influence i and that the current control
influences i if and only if l = r = 1. In MILP language, these variables are assignment
variables that assign to each individual a unique combinatorial confidence configuration.

• For jmin, jmax ∈ I, we introduce variables p(jmin,jmax) where p(jmin,jmax) = 1 if and only if
the following holds: jmin is the minimal index of an individual in the conviction interval
in Stage N, and jmax is the maximal index of an individual in the conviction interval
in Stage N. The motivation for these variables is that they are indicating the unique
combinatorial conviction configuration (jmin, jmax) in the final stage: If p(jmin,jmax) = 1

then the number of convinced individuals in Stage N is simply jmax − jmin + 1.
We introduce a very small δ > 0 (in our computational experiments we chose δ = 10−6) with

the following meaning: whenever j is not in the confidence interval of i, then |xi − xj| > ε + δ
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must hold. This is stronger than the original condition, which is: if j is not in the confidence
interval of i, then |xi − xj| > ε must hold, and vice versa. This original condition is a strict
inequality that can not be handled directly in MILPs, and a transformation to a different MILP
(in modified so-called homogeneous variables) is usually numerically highly unstable.

With the modified condition we can choose either to exclude potentially feasible solutions
(this happens for δ > 0) or we grant the optimization algorithm to choose freely whether or not
j is in the confidence interval of i whenever |xi − xj| = ε (this happens for δ = 0). So, whenever
we are after feasible solutions we will set δ to something strictly positive, and whenever we are
after upper bounds on the optimal number of convinced individuals we set δ to zero.

This slight inaccuracy in modeling is acceptable since the MILP-solvers we can employ use
inexact floating point arithmetic with an accuracy of 10−6 anyway.

The resulting model can be formulated as follows:

max
∑

(jmin6jmax)

p(jmin,jmax) (9a)

subject to ∑
jmin6i6jmax
l,r∈{0,1}

vti,(jmin,jmax;l,r) = 1 for all t = 0,1, . . . ,N− 1,

i ∈ I (9b)

xti − xtjmin
− ε− (1− ε)

1−
∑

jmax>i
l,r∈{0,1}

vti,(jmin,jmax;l,r)

 6 0 for all t = 0,1, . . . ,N− 1,

i ∈ I,
jmin 6 i (9c)

−xti + xtjmax − ε− (1− ε)

1−
∑

jmin6i
l,r∈{0,1}

vti,(jmin,jmax;l,r)

 6 0 for all t = 0,1, . . . ,N− 1,

i ∈ I,
jmax > i (9d)

xti − xtjmin−1 − ε− δ+ (1+ ε+ δ)

1−
∑

jmax>i
l,r∈{0,1}

vti,(jmin,jmax;l,r))

 > 0 for all t = 0,1, . . . ,N− 1,

i ∈ I,
0 < jmin 6 i

(9e)

−xti + xtjmax+1 − ε− δ+ (1+ ε+ δ)

1−
∑

jmin6i
l,r∈{0,1}

vti,(jmin,jmax;l,r))

 > 0 for all t = 0,1, . . . ,N− 1,

i ∈ I,
i 6 jmax < n

(9f)

xti − xt0 − ε− (1− ε)

1−
∑

jmin6i6jmax
r∈{0,1}

vti,(jmin,jmax;1,r))

 6 0 for all t = 0,1, . . . ,N− 1,

i ∈ I (9g)
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−xti + xt0 − ε− (1− ε)

1−
∑

jmin6i6jmax
l∈{0,1}

vti,(jmin,jmax;l,1))

 6 0 for all t = 0,1, . . . ,N− 1,

i ∈ I (9h)

xti − xt0 − ε− δ+ (1+ ε+ δ)

1−
∑

jmin6i6jmax
r∈{0,1}

vti,(jmin,jmax;0,r))

 > 0 for all t = 0,1, . . . ,N− 1,

i ∈ I (9i)

−xti + xt0 − ε− δ+ (1+ ε+ δ)

1−
∑

jmin6i6jmax
l∈{0,1}

vti,(jmin,jmax;l,0))

 > 0 for all t = 0,1, . . . ,N− 1,

i ∈ I (9j)∑
jmin6jmax

p(jmin,jmax) 6 1 for all t = 1, . . . ,N

(9k)

`− xtjmin
− `

1−
∑

jmax>jmin

p(jmin,jmax)

 6 0 for all t = 1, . . . ,N

(9l)

xtjmax − r− (1− r)

1−
∑

jmin6jmax

p(jmin,jmax)

 6 0 for all t = 1, . . . ,N

(9m)

(jmax − jmin + 1+ lr)xti − lrxt−10 −
∑

j∈I:jmin6j6jmax

xt−1j

− (jmax − jmin + 1+ lr)
(
1− vti,(jmin,jmax;l,r)

)
6 0 for all t = 1, . . . ,N,

i ∈ I,
jmin 6 jmax,

l, r ∈ {0,1}
(9n)

(jmax − jmin + 1+ lr)xti − lrxt−10 −
∑

j∈I:jmin6j6jmax

xt−1j

+ (jmax − jmin + 1+ lr)
(
1− vti,(jmin,jmax;l,r)

)
> 0 for all t = 1, . . . ,N,

i ∈ I,
jmin 6 jmax,

l, r ∈ {0,1}

(9o)

xti ∈ [0,1] for all t = 1, . . . ,N,

i ∈ I (9p)

vti,(jmin,jmax;l,r) ∈ {0,1} for all t = 1, . . . ,N,

jmin 6 i 6 jmax,

l, r ∈ {0,1}

(9q)

p(jmin,jmax) ∈ {0,1} jmin 6 i 6 jmax

(9r)
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We note that some perturbation of the objective function based on the average distance of
individuals not yet in the conviction interval over all stages helps the MILP solver to find feasible
solutions. This problem, however, is much more successfully addressed in the following section.

6. Heuristics to Find Good Controls

In the previous section we have described a MILP-formulation of our problem. So in principle
one could solve every problem instance by standard of-the-shelf software like ILOG cplex. In
contrast to the Lehrer-Wagner model, where we could solve our benchmark problem for any
number of stages between between 1 and 10 without any difficulty, the instances from the bounded
confidence model are quite harder. Using the MILP-formulation of the previous section we were
only able to determine the optimal control up to 5 stages using ILOG cplex.

The approach using a MILP-formulation has the great advantage that we receive upper bounds
for the optimal control. For the other direction we need heuristics that can efficiently determine
good control. Also our MILP-approach benefits from good feasible solutions especially if they
respect branched variables in the branch & bound search tree. So in the next subsections we
give three heuristics to find good controls.

6.1. Strongest-guy heuristics. What makes the problem hard is, despite apart from the dis-
continuous dynamics and numerical instabilities, is the fact, that the control x0 is a continuous
variable in all stages. So at first sight the problem is not a finite one. Using the MILP-approach
it becomes a finite problem nevertheless. Let us relax our problem a bit by allowing only a finite
number of possibilities for x0 at any stage and have a closer look at the situation.

By placing a control x0 at a certain stage some individuals are influenced by x0 others are not
influenced by x0. We notice that the magnitude of influence rises with the distance between the
individuals opinion xi and the control x0 as long as their distance remains below ε. So the idea
is, nevertheless we are not knowing what we are doing, we will do it with full strength. Let c
be the center of the conviction interval [l, r] then the set of possible positions of x0 at a certain
stage is given by {

xi + ε if xi 6 p,

xi − ε if xi > p

for all i ∈ I. We call this relaxation of the problem the strongest-guy heuristics.

Stages Convinced Individuals Control
0 3 []
1 3 [4]
2 4 [4, 4]
3 5 [4, 8, 3]
4 6 [3, 3, 8, 6]
5 6 [3, 3, 8, 7, 9]
6 6 [3, 7, 3, 8, 3, 3]
7 8 [3, 8, 1, 2, 4, 1, 1]
8 8 [4, 5, 10, 9, 9, 1, 1, 1]
9 8 [3, 9, 3, 8, 9, 8, 8, 8, 9]
10 11 [3, 11, 4, 6, 9, 8, 8, 8, 6, 1]

Table 1. Results of the strongest-guy heuristic on the benchmark example.

Instead of giving the exact values of x0 for all stages we can also give the indices i if we
use this heuristic. In Table 1 we give for our benchmark problem the maximum number of
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convinced individuals that can be achieved by using the strongest guy heuristic together with
the corresponding index-vector. Although being a heuristic, we can conclude that if the number
of stages is at least 10 then the maximum number of convinced individuals is 11. Clearly, this is
only possible due to the trivial upper bound of 11 = |I|. The values of Table 1 are proven to be
optimal for up to 5 stages by using the MILP approach from the previous section. We remark
that we are not aware of any improvements to Table 1.

Having a look at the optimal controls of Table 1 one gets an impression of the hardness of
our problem. There seems to be no obvious pattern in the optimal controls. Who would have
guessed a control like [3, 11, 4, 6, 9, 8, 8, 8, 6, 1]? We remark that starting with x1 or x2 at the first
stage does not lead to 11 convinced individuals at the end. I.e. starting with x2 and continuing
with x11 does lead to only 7 convinced individuals using the strongest-guy heuristic.

We remark that the strongest-guy heuristic can be easily adopted to the situation where some
of the 0− 1 variables from the MILP formulation from the previous section are fixed to either 0
or 1.

6.2. Genetic algorithm. To get a better idea about the solution space, we implemented a
genetic algorithm (GA) to search for optimal solutions. The GA used standard GA methods to
evolve good solutions from a randomly chosen set of starting strategies. To use GA for the the
problem, the problem has to be formulated to suit the GA terminology. A GA instance consists
of genes that form a chromosome. Each chromosome can be evaluated using a fitness function,
which serves to determine the chromosome’s quality with respect to the original problem. The
GA uses alternating steps of evolution and selection to modify the chromosomes and moving
the entire population of chromosomes to increase the number of high quality chromosomes. By
means of the survival of the fittest, the selection process sorts out weak chromosomes with low
fitness values, while it retains chromosomes with high fitness values. The remaining chromosomes
evolve to the next round of the GA. The following subsection explain the different parts of the
GA individually.

6.2.1. Set Up of the GA. The only free variables in our example problem are the ten different
positions of our freely selectable individual: The ten different positions make up one strategy
to control the remaining individuals. In the GA, one strategy is encoded as one chromosome
with the ten different positions each occupying one gene. Because of the numerical inaccuracies
(Section 3) in standard floating point implementations, the GA had to use fractions to specify
the strategies. Throughout the GA exact arithmetics had to be used, which, since the GA has
been implemented in Java, made use of the java.math.BigInteger class.

The GA itself has been set up to run for 250 rounds or until an optimal control had been
reached, whichever would occur first. The size of the population has been set to 500 individuals.
Both values could be increased to get a higher chance to reach an optimal solution. However,
the computational cost of using exact arithmetics is quite high, which led to this acceptable
compromise.

6.2.2. Fitness Function. In the example we used the conviction interval of [0.375, 0.625], the most
obvious fitness function to use is to count all the convinced individuals. This fitness function
is denoted as MaxVotes (MV). Figure 2 depicts a typical run of the GA with the MV fitness
function.

While the MV fitness function provides an exact mapping of the original problem to the
formulation of the GA’s fitness function, it does not provide a very good example of a fitness
function for a GA because it is discontinuous and has huge gaps in its range. Because the
fitness function is just a count of the convinced individuals, the function can take integer values
only. However, the GA’s fitness function is defined on real values. As a consequence, the fitness
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Figure 2. GA with the MaxVotes fitness function yielding at most eight voters

function does not provide enough information about a particular strategy. In the figure, one can
see that, approximately after round 120, almost all remaining strategies yield eight voters, but
the GA does not progress further to yield more voters. This indicates a lack of information on
the strategies. If all chromosomes evaluate to the same fitness value, the GA has no way to select
the fittest chromosomes and advance them to the next generation.

Therefore, we came up with some different fitness functions that span the entire range and try
to provide additional information about strategies that yield the same amount of voters. These
strategies, however, deviate from the original problem and create a slightly different problem for
the GA to solve. Thus, all fitness functions that do not map the original problem directly, have
to be evaluated with respect to their mapping ability.

The fitness functions fall into three different categories:

Weighted Sum: This category of fitness functions calculates the weighted sum of all the
individuals final positions. The weight to be used is computed with a given partially
defined function that maps a position to a weight. The MV fitness function is a special
case of the Weighted Sum class of functions, because it assigns weight 1 to all positions
in the conviction interval and weight 0 otherwise. The other functions used in this class
are DistanceToParty2 (D2P2) and BorderDistanceToAll (BD2A). Both of them differ
from MV in that they assign values between 0 and 1 to positions that (a) are not in
the conviction interval with higher values the closer the position is to the interval or
(b) decreasing values within the interval, the closer the position is to the center of the
interval. This leads to positions of individuals on the very edges of the interval to be the
most favorable. The idea behind evaluating positions within the interval differently is
that individuals sitting on the edges of the interval have the greatest effect on individuals
that are not in the range yet.

Last Remaining: The class of the last remaining fitness functions does not evaluate every
individual but restricts itself to convinced individuals (counted with weight 1) and the
nearest individual that has not reached the conviction range yet (weighted according to
the function). All other individuals are assigned weight 0. The fitness function in this
category is BorderDistanceToMin (BD2M), which has the same form as BD2A from the
Weighted Sum category.

Minimum Distance: The last class of fitness function does not evaluate all individuals
positions but takes into account the distance between the two outmost individuals (i. e.
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the individual with the highest opinion and the individual with the lowest opinion).
Because of the order preserving characteristics of the model, these two individuals do
not change throughout one run, which means, we can just use the distance between the
individual that started with opinion 0 and the one that started with opinion 1. If the
distance is in the range of [0, 0.25], which is the size of the conviction interval, the fitness
evaluates to the maximum fitness value of 10. If the distance is greater than 0.25, the
function computes a value that is decreasing to 0 with increasing distance. The two func-
tions used in this class are MinimumDistanceBetweenFirstAndLast (MDBFL) and Min-
imumDistanceBetweenFirstAndLastSquare (MDBFLS) that have a linear or quadratic
slope respectively. A third function in this class is the MinimumDistanceBetweenFir-
stAndLastToCenterSquare (MDBFL2CS) that accounts for the fact that the group of
individuals with opinions below 0.5 may not behave symmetrically to the group with
opinions above 0.5. This asymmetry can result in the position range not to be centered
around 0.5 but deviate from that midpoint. Such behavior is undesirable, since the orig-
inal goal is to get as many individuals close to 0.5 as possible. MDBFL2CS accounts
for this and evaluates the positions of the two outmost individuals with respect to their
distance to the desired midpoint. The two values are added.

6.2.3. Evolution. After the evaluation phase of the GA, the fittest chromosomes are chosen to
advance to the next generation. There are different selection algorithms available. We used two
different ones, which are among the standard selection algorithms:

Weighted Roulette Selector (WRS): Each chromosome is assigned a probability to
advance to the next round proportional to its fitness. Then the population for the next
round is chosen by randomly picking a chromosome from the so called “roulette wheel”
as often as desired. This selection method allows for some chromosomes with low fitness
values to advance to the next round, which results in a lower chance to reach a local
optimum too quickly.

Best Chromosomes Selector (BCS): The BCS sorts the population according to the
fitness values and discards the fraction with the lowest fitness values. The ration of
chromosomes to retain is configurable. BCS fosters depth search with the danger of
reaching a local optimum. As an advantage, it progresses much quicker than WRS.

After the chromosomes for the next round have been selected, the GA performs the crossover
and mutation operations, whose parameters (percentage of the mutation, point of crossover) are
configurable.

6.2.4. Results. Figure 3 show the performance of the different fitness functions. One notable
observation is the step like behavior of the MV fitness function: Already around round 30, it
reaches eight individuals, but does not advance from there. All the other fitness functions show
a much smoother behavior. However, with the exception of BD2A and MDBFLS, all functions
seem to have reached a plateau around round 150.

Judged from the performance of the fitness functions, BD2A promises the best results as it
still progresses at round 250 and also reached a high fitness value. However, as BD2A optimizes
a slightly different problem than the original problem. Therefore, the performance with respect
to the fitness function has to be compared with the performance of the fitness function with
respect to the voters.

Figure 4 depicts the performance of the fitness functions MV, BD2M, and MDBFLS. While
MV maps the original problem exactly, only BD2M provides a good mapping. MDBFLS (and
all other fitness functions alike) does not provide a good mapping of a fitness value to a certain
number of voters. This, of course, poses a problem, since the only way for the GA of evaluating
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Figure 3. Different fitness functions reach different results

Figure 4. Performance of three fitness functions with respect to the convinced individuals

a certain strategy is the fitness function. The graph suggest that, apart from MV, only BD2M
should be used.

Of the two different selectors available, BCS proofed to be the most useful of the two. While
the WRS worked, the evolution of the population happened very slowly regardless of the fitness
function used. Figure 5 shows the result of the two selectors while using the same fitness function
(BD2A). Similar results hold for all other fitness functions as well.

Figure 5. Comparison of two different selectors

Because of these findings, the BD2M fitness function has been tested with different values
for the best performing selector BCS. The selector allows to configure the fraction of indi-
viduals that advances from one generation to the next. With a value of 50% only the bet-
ter half of chromosomes advances. This leads to an extremely narrow search that runs into
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high risks of lingering at a local optimum. To increase the chances of leaving a local op-
timum again, the percentage should be increased. In the simulation, runs with ratios from
the set {0.5, 0.6, 0.7, 0.75, 0.80, 0.85, 0.9, 0.91, 0.92, 0.93, 0.94, 0.95, 0.96, 0.97, 0.98, 0.99} have been
used. From these runs, only ratios above 0.75 resulted in stable evolution patterns, while rates
below had their fitness values alternate between very low and very high values but did not
converge.

Above 75% all runs converged with an optimal rate at around 95%. The runs with ratios of
0.95 and 0.96 were the ones that produced strategies that at least gave nine convinced individuals.
Figure 6 shows these two runs and the number of voters that each chromosome generated.

Figure 6. The two runs for different values for the BCS survival rate

Altogether the GA provides a heuristic to find optimal (or near optimal) solutions. However,
because of the problem structure the GA did not find an optimal solution for the control problem.
The most convinced individuals that the GA could find a strategy for were nine in the example
setting. Strategies yielding nine individuals were extremely rare and could only be obtained in
settings with highly tuned parameters. This result seems to indicate that the solution space has
a very sparse population that could possibly occupy a very restricted region in the space.

6.3. Receding horizon. (Jörg)

7. Conclusion and outlook

Extensions:
• Investigation of chaotic behavior of the bounded-confidence dynamics
• Each party has its own controller (game theory)
• Multi-dimensional opinion space

7.1. A game theoretic point of view.

7.2. Generalizations of the opinion space.
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