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Abstract

We consider production planning problems with the restriction that

all integer variables model setups. Since �nding a feasible solution of such

problems is in general NP-complete, the classical approaches have been

the use of heuristics to �nd good feasible solutions on the one hand, or

Branch&Cut on the other hand. In the case of the former, a dual bound is

not available, and there is no guarantee of solution quality. For the latter,

the accent has been on improving the dual bound and only the simplest

schemes have been used to �nd good feasible solutions.

Here we �rst show that such simple schemes may run into trouble,

even when applied to very simple problems. This motivates the proposed

heuristic, IPE, which is designed to be used within a Branch&Cut ap-

proach. We test the performance of the heuristic on various published

lotsizing and network design problems, with and without tightened re-

formulations. We compare these results with other heuristics and with

time truncated B&B searches. IPE appears to be the best choice for large

problems with weak formulations.
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1 Introduction

The aim of this paper is to present a heuristic for a restricted class of capacitated
multi-item multi-level lot sizing problems with setup times. This problem has
recently received much attention both because of its applicability to real life
production planning problems and its complexity. In 1991, Maes et al.[21] have
shown that setup times make the search for a feasible solution NP-Complete,
while Arkin et al.[1] have shown the general uncapacitated multi-level problem to
be NP-Hard. Hence, one cannot reasonably ask for a provably optimal solution
of reasonable-size instances of such problems. However, its applicability has
motivated a lot of research.

Two main approaches can be outlined. The �rst one is the design of heuris-
tic schemes which mainly try to �nd good feasible solutions. As examples, we
list here some recent contributions of this type. For a more complete survey
of the subject, see for instance Kuik et al.[20]. Tempelmeier and Derstro� [30]
have used a Lagrangean relaxation approach followed by a shifting production
procedure to restore feasibility. Katok et al.[16] solve a series of linear programs
without setup variables, modifying both objective and matrix coeÆcients to take
setups implicitly into account. They then try to shift production to improve
their solution by a restricted local search in the space of setup variables. Kim
and Pardalos [17] have used a similar procedure for �xed charge network ow
problems, but waiting for convergence. Simpson and Erenguc [29] have argued
that, in relaxation approaches, the structure of the relaxed problem is too di�er-
ent from that of the original one to produce near optimal solutions. They instead
use a modi�ed lot-for-lot solution which is improved by local search heuristics.
Meyer [23] uses a simulated annealing approach in solving multi-item multi-
machine lot sizing problems. Despite the good results obtained, this heuristic
approach su�ers from a lack of informative lower bound, leaving the user with-
out any measure of the quality of the solution. This is not true in general for

Lagrangean approaches, but for the type of lotsizing problems considered here,
the bounds obtained in this way are typically very weak.

The second approach is Branch and Cut (B&C). Indeed, adding cutting
planes has proven to be a successful way to improve the formulation of lot siz-
ing problems. Because of the tightness of the bounds provided, a branch and
bound (B&B) tree may be used and truncated if needed. Pochet and Wolsey [27]
show successful results in solving capacitated multi-item multi-level problems
without setup times. Constantino [8, 9] extends these results to startups and
lower bounds on production, while Miller [24, 25] generalizes to problems involv-
ing setup times. Many of those studies have been implemented in BC-PROD,
a B&C code for solving lot sizing problems [4]. In [3], Belvaux and Wolsey
show excellent computational results on various practical problems. It should
be noted that in [3], much emphasis is placed on improving the lower bounds
by adding strong valid inequalities, and much less on �nding good feasible so-
lutions during the branching process. Indeed, the search for primal solutions
is embedded in the branching and node selection rules of the enumeration. In
their simplest forms those rules rely on the fractional values of the LP solution.
More complicated schemes using merit functions have also been used. However,
the merit functions only take into account the change of the dual bound, see
Cordier [10], which is logically independent of �nding good feasible solutions.

The heuristic presented in this paper draws on both approaches. It is not
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an enumeration procedure, even though it can take advantage of cutting planes
generated and branchings already performed, and is therefore well suited to

be used within a B&C enumeration tree. It is based on the linear program-
ming relaxation of the problem, and its main idea is to exploit the speci�c
dependance between the setup variable and the associated production variable.
There are two points that we particularly want to highlight in this paper. Firstly,
the search for good feasible solutions during the enumeration process does not

have to be done exclusively through speci�c branching or node selection rules.
Secondly, strong cutting planes, designed to improve lower bounds, can be ef-
fectively used by primal heuristics (that are not based on progressively �xing
integer variables).

The paper is organized as follows. In Section 2 we describe the generic MIP
that we want to solve. In Section 3 we show that primal heuristics based on the
value of the fractional solution may face a major diÆculty. We then describe
the proposed scheme, IPE, in Section 4. Finally, in Section 5 we describe a
variety of lotsizing and network design problems, and in Section 6 evaluate the
performance of our heuristic in solving these problems. We conclude in Section
7 with some directions for future research.

2 The model

The MIP problems we want to tackle have the following structure:

min px+ fy + hs (1)

s:c: A1x+A2s = d (2)

B1x+B2y � D (3)

x� Cy � 0 (4)

y 2 f0; 1gjIj; x; s � 0 (5)

with B1; B2; C � 0 and C = diag(c1; c2; � � � ; cjIj), where I is the index set over
which variables x and y are de�ned.

This model is fairly general and the following problems may be modelled by
such a MIP :

Lot Sizing The x variables here represent production, the y variables stand for
the setup associated with the production variables x and are used to model
both setup costs and times. The s variables represent stocks and backlogs.
Constraints (2) are typically inventory or ow conservation constraints,
and (3) model capacity restrictions. The following extensions of the basic
lot-sizing problem match the structure of the model : varying capacities,
setup times, multi-item, multi-machine, multi-level, setup cost/time on
stock. However, variable lower bounds on production, requiring additional
constraints of the form x�Ly � 0, or start-ups requiring additional binary
variables de�ned using di�erent constraints other than (4), are not part
of our generic model (1)-(5).

Network Design Many combinatorial problems that can be modelled as ow
problems in a graph �t the above model perfectly. In this case, the x's
are ow variables associated to the ow on the arcs of the graph, and
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the y's indicate whether an arc is opened or not. The s variables, if used,
may represent ows without opening cost and therefore without associated

binary variables. Constraints (2) enforce ow conservation at each node,
constraints (4) model setup and capacity restrictions on the ows, but
there are usually no constraints of type (3).

To refer to the lotsizing application, in the sequel, x variables will be called
production variables and y variables will be called setup variables.

3 Motivation: a diÆculty for LP-based heuris-

tics

For LP-based heuristics, the idea of "rounding" the linear relaxation solution
to an integer solution is natural. Such rounding heuristics �t into the following
framework, where LP stands for the linear relaxation of problem (1)-(5).

Algorithm 1

1. a) Let I0 = I

j = 0
b) Solve LP

2. Until all y variables are integer :
a) j = j + 1

b) Select a subset Ij of I n ([j�1k=1Ik)
c) For all i 2 Ij , select y

0
i 2 f0; 1g and add the constraint yi = y0i to LP

d) Solve LP

e) if LP is infeasible, backtrack

The key operations in this algorithm are the selection (2:b) of the variables
to be �xed, the choice (2:c) of the value at which those binary variables are
to be �xed, and the backtracking operation (2:e). We describe how classical
heuristics �t into this framework:

truncated B&B In a pure B&B search, the sets Ij are singletons, and the
backtracking is always as limited as possible. The succession of 2:b and
2:c is referred to as "branching rule". In a truncated B&B we stop as soon
as we have found a solution. In other words, algorithm 1 may be seen as
a truncated B&B search with a depth �rst node selection strategy, and in

which we dive jIj j levels at a time.

successive rounding Probably the most basic choice for the step 2:c is to
round the variables to their nearest integer values. The selection of the
variables in Ij at step 2:b may be prede�ned (for example, lexicographic
order) or computed at each step (for example, based on the most (least)
fractional variables in the current solution, as in [10]). When the sets Ij
contain more than one variable, new values must be determined for y0i
when backtracking.

probabilistic �xing Another idea is to interpret the fractional value of vari-
able y as the probability that y will be one at the optimal integer solution.
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In that case, the set I1 can be taken equal to I (all binary variables are
�xed at the same time), and each variable y is �xed to one with a probabil-

ity yLPi , the current fractional value of yi. Several trials may be performed,
until one or several feasible solution are found, or until a maximum number
of iteration is reached, as in [7].

successive probabilistic �xing The two previous approaches may be mixed
in the following way : the basic algorithm is as successive rounding, except
that variables are not rounded but �xed according to a Bernouilli trial with
probability yLP . Note that this provides an elegant answer to the problem
of determining new values y0i in the case of backtracking.

Relax& Fix This heuristic has been used for lot-sizing problems, and is also
referred to as "time decomposition heuristic", see [4]. The time interval
[1; NT ] (corresponding to a planning horizon from period 1 up to period
T ) is divided in Q = dNT

P
e subintervals of length P . At step 2:b, we

choose Ij such that it contains all production variables in the time interval
[(j � 1)P +1; jP ]. At step 2:c, the values y0i are computed as the optimal
integer solution of the problem with variables contained in Ij treated as

integer, variables in [
j�1
k=1Ik are �xed and variables in I n ([j�1k=1Ik) relaxed

to be continuous in [0; 1]. P is typically choosen small enough such that
these problems are easy to solve. This decomposition idea can be used
for any problem where there exists a "natural" ordering of the binary
variables.

Obviously, the larger P , the better the solution, but the running time
increases exponentially with the size of P . A possible variant designed to
improve the quality of the solution without risking exponential explosion
is to use overlapping intervals.

All heuristics presented up to now, except Relax&Fix, use the value of the
optimal LP solution yLP to compute the value y0. But the fractionalLP solution
is not always a good indicator of the optimal MIP solution. This is illustrated
by the following example.

Example 1

min z = 5x1 + 6x2 + 30y1 + 35y2

x1 + x2 � 20

x1 � 20y1

x2 � 100y2

x � 0; y 2 f0; 1g

The optimal solution is

x1 = 20; y1 = 1; x2 = 0; y2 = 0

with z = 130, but the LP solution is

x1 = 0; y1 = 0; x2 = 20; y2 = 0:2

with z = 127.
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In the example, the LP solution indicates the wrong choice for step 2:c.
Moreover, the probabilistic heuristics will never �nd the optimal solution since

y1 has probability zero of taking the value one.
A particular feature of model (1)-(5) is crucial here : variables y are always

taken as small as possible given the x variables. In the model, the only lower
bound on y are the VUB constraints (4), and these are always active in the
optimal solution. Hence, in model (1)-(5), and in Example 1, we always have

yLPi = xLPi =C, and the solution is fractional whenever xLPi is nonzero and
smaller than C. The values yLPi are underestimated unless xLPi = 0.

Observation 1 In the solution of the linear relaxation of model (1)-(5), when

xLPi is positive, it is impossible to distinguish the case where xLPi will remain

positive even if the true setup cost and time are charged ; from the case where

xLPi has to be zero because the setup is to expensive or takes too much time.

Therefore, the value of the linear relaxation solution is not as such a good
indicator of the integer optimal solution. The idea which will be explored in
the next section is to change the model so that the new LP solution is a better
indicator of a good integer solution.

4 The Iterative Production Estimate Heuristic

4.1 The scheme

When solving the linear relaxation of model (1)-(5), the Variable Upper Bound
constraint (4) of the MIP model, which de�nes a noncontinuous lower bound
(NCLB) on variable y, is approximated by a linear lower bound function (LLB)
(see Figure 1).

C
0

1

x

y

NCLB

LLB

C
0

1

x

y

C’

NCLB

MLLB

Figure 1: x-y relations in modi�ed LP. Figure 2:x-y relations in IP and LP.

As a consequence, the setup variable is underestimated all over the domain.
This is because we want the LP to be linear and to be a relaxation of the original
problem, yielding a dual bound. But maybe this is not the best approximation
to �nd a primal bound.

For example, if one has a good reason to think that production will be close
to zero or C 0 in the optimal solution, one could use the modi�ed linear lower
bound (MLLB) approximation of Figure 2 to �x a lower bound on the setup
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variable. The associated setup variable will be close to zero or one in the new
LP solution.

The basic idea of our scheme is thus to drop the requirement that we work
with a relaxation of the initial model, and to use linear approximations allowing
one to obtain fractional solutions which are closer to good integer solutions.

A natural candidate for C 0, an estimate of the level of production in the
case it will be nonzero, is given by the LP solution. This leads to the following

iterative algorithm, where LP (�) denotes the linear relaxation of problem (1)-
(5) using the vector � to de�ne the VUB constraints (4) (i.e. x � �y).

Algorithm 2

1. C 0 = C

solve LP (C 0), with solution (xLP ; yLP ; sLP ).

2. until all yi variables, i 2 I, are integer

a) For all i 2 I such that yLPi =2 f0; 1g, modify C 0
i as C

0
i = xLPi

b) solve LP (C 0), with solution (xLP ; yLP ; sLP ).

There is however a big problem with this scheme : the production variables
are monotonically decreasing because xi cannot exceed C 0

i . As a consequence,
if at one iteration C 0

i goes below the unknown optimal value x�i , the scheme will
never reach the optimal solution. Two things may be done to overcome this
drawback.

� In step 2:a, substitute C 0
i by �x

LP
i +(1��)C 0

i. This smoothing modi�cation
prevents jumping too fast.

� Remove the upper bound on yi so that production xi may increase beyond
C 0
i. And to prevent production to increase beyond the true capacity , we

add an upper bound Ci on the production variables.

We obtain the �nal Iterative Production Estimate (IPE) heuristic, where
LPC(�) denotes the linear relaxation of problem (1)-(5), augmented with the
upper bounds xi � Ci, for all i 2 I , without upper bounds on variables yi, for
all i 2 I , and using the vector � to de�ne the VUB constraints (4) (i.e. x � �y).

Algorithm 3 (IPE)

1. C 0 = C

solve LPC(C 0), with solution (xLP ; yLP ; sLP ).

2. until all yi variables, i 2 I, are integer

a) For all i 2 I such that yLPi =2 f0; 1g, substitute C 0
i by �xLPi + (1� �)C 0

i

b) solve LPC(C 0), with solution (xLP ; yLP ; sLP ).

3. a) restore original problem (1)-(5)

b) solve the LP problem obtained by �xing the binary variables

at their �nal values obtained at step 3.

The update of the VUB capacities C 0 in the new approximate linear formu-
lation LPC(C 0) tries to distinguish between the two cases mentioned in Obser-
vation 1.
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If a variable yi is fractional and less than one, C 0
i will decrease at the next

iteration, and the same production level xi will induce a higher value of the

associated setup variable yi. So, the updated model tries to charge a higher
setup time and cost to the production level xLPi , in order to observe whether
the production level is maintained at this higher price, or production decreases
because the new setup cost/time is too expensive.

Note that if we apply algorithm 3 to example 1, it converges to the optimal

solution in two iterations.

4.2 Initialization

The scheme is initialized with C 0 = C. This ensures that the procedure starts
with a relaxation of the initial problem. Therefore, infeasible linear relaxations
can still be detected.

4.3 Stopping criterion

The stopping criterion supposes that the scheme converges (i.e. the setup vari-
ables converge to binary values). However, there is a priori no reason why this
should be the case. But there is convergence in practice, and we leave the
practical discussion to section 6.

In case of convergence, the obtained solution is feasible for the original prob-
lem, because:

� All binary variables are zero or one.

� All constraints except VUBs have been kept in the model.

� The production is bounded by C.

� There is no production if the corresponding setup variable is zero.

Therefore, IPE gives feasible solutions for any additional constraints, provided
of course that it converges.

4.4 Setup reduction subroutine

In speci�c cases, the solution provided by IPE can be easily improved by elim-
inating setups. This is implemented as an option in IPE. More speci�cally, all
non zero setup variables are sequentially set to zero and the corresponding LP
solved. If a better solution is obtained, it becomes the incumbent. This has
been used for the Trigeiro test problems (see Section 5.1).

4.5 Links with other schemes

The scheme has common features with that proposed in Harrison et al. [14],
and generalised in Katok et al. [16], called CMSB. They also use a linear
approximation of the dependance of the setup on production. But the spirit of

their algorithm is di�erent since they do not wait for the algorithm to converge,
but rather use the solution obtained by running the algorithm for a couple of
iterations as a starting point of a search heuristic in the space of the binary
variables. This in turn implies a second di�erence, because the local search in
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the space of the binary variables gives the same results with or without cuts.
The presence of cuts will a�ect the behaviour of their algorithm only in the �rst

stage of the heuristic.
Kim and Pardalos [17] have used a similar approach (called DSSP) for �xed

charge network ow problems. Instead of modifying the capacities in the VUB
constraints, they get rid of the setup variables and treat them implicitly by
updating the objective function coeÆcients of the production variables. For

problems without setup times, the two algorithms, DSSP (with initialization of
type II and updating scheme of type II) and IPE, are equivalent, except that
DSSP checks if intermediate (i.e. fractional) solutions are not by chance good
feasible solutions. In this sense, IPE can be considered as the extension of DSSP
allowing one to tackle problems with setup times, or more general constraints
of type (3).

5 The test set

The heuristic has been primarily designed for lot sizing problems but, as men-
tionned in Section 2, can be used for various combinatorial network problems.
The test set will thus contain problems from both �elds.

5.1 Lot Sizing Problems

The lot sizing test set contains problems from LOTSIZELIB [2] compatible
with our generic model (1)-(5), i.e. those which do not contain variable lower
bounds on production or start-up variables. A detailed description of each
one can be found at the URL mentioned as reference. We have also added
problems from Simpson and Erenguc [29]. They are multi-level capacitated
problems with setup times and costs. Capacities, setup times and setup costs
apply to families of products, which may have common products. Two di�erent
industrial applications (A and B), for which two data sets (1 and 2) and two
di�erent formulations (normal stock and echelon stock, see [6], [28]) have been
used, yielding 2*2*2=8 models for 4 di�erent problems (i.e. two models for each
problem). They will be called SimEren.

For each problem, three formulations have been used. The �rst one is a
straightforward instance of the general model (1)-(5). The second one is the
same augmented with the cuts generated by XPRESS-MP [12] with default pa-
rameters. The third one is the original model augmented with the cuts generated
by BC-PROD [3], a specialized code for lotsizing problems. For all the problems
considered, cuts from BC-PROD were stronger than those from XPRESS-MP.
Since we were not able to use BC-PROD with the echelon stock reformulations,
there are only two reformulations for each SimEren problem with the echelon
stock formulation.

Each model is also classi�ed as easy (E), medium (M) or DiÆcult (D). The
concept of "diÆculty" of a MIP is elusive, because it is fuzzy and depends
on many di�erent criteria, such as the depth of the search tree, the number
of feasible solutions, the branching rules used, etc. However, because of its
usefulness for the analysis in the next section, such a classi�cation has been
made, according to the following rules :
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� If two out of the three branching heuristics (see section 6.1) cannot �nd
within �ve minutes a better solution than 130% of the best solution known,

the problem is classi�ed as DiÆcult.

� Models for which the optimal solution is found by at least one of the
branching heuristics within �ve minutes are classi�ed as Easy.

� All other problems are classi�ed as Medium.

Appendix A.1 summarizes the important features of the di�erent lotsizing
problems.

5.2 Network problems

Various problems may be formulated as �xed charge network ow (FCNF) mod-
els. We consider single-commodity, single- and multi-source problems, with and
without capacities. All problems are from [26], where a detailed account of
the way they have been generated can be found. Here follow the important
characteristics:

� Steiner tree problems may be modelled by a single source uncapacitated
FCNF model with ow (variable) costs set to zero. One terminal node is
arbitrarily selected as the source, while the others are sinks. The problems
are available at ftp : ==ftp:zib:de=pub=Packages=mp�testdata=index:html,
and a complete description of them can be found in [19].

� �xnet6 is from MIPLIB [5].

� [13] Multi-segment graphs are FCNFs with concave piecewise linear costs.
They are modelled by duplicating arcs as many times as the number of
segments in the piecewise linear function and by adding the constraint
that at most one arc can have a positive ow. Our test problems have at
most four segments per arc.

� Various kinds of graphs have been randomly generated using a modi�ed
NETGEN generator(see [18] for the original generator and [26] for the
modi�cations). The names indicate the type and the size of the graphs: g
stands for grid, k for complete, sp for series-parallel, r for random struc-
ture, p for planar. The two numbers indicate the number of nodes and
arcs respectively. The structure of the series-parallel and planar graphs are
determined using speci�c routines from LEDA [22]. For random graphs,
arcs are created by randomly selecting two nodes as many times as the
number of desired arcs.

� Problems h are from [15]. These are complete directed graphs with Eu-
clidian distances as variable costs, plus one demand node linked to all the
other nodes. Fixed costs are 50 times the variable ones.

� Capacitated graphs were built on the basis of uncapacitated graphs with
a similar name. The capacities have been generated using the C/C++
random number generator.

Appendix A.2 summarizes the important features of the network problems.
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6 Computational results

In this section, we would like to answer to the two following questions:

� How does the performance of IPE compare with that of other heuristics?

� What is the inuence of cuts on the performance of IPE?

All algorithms have been coded in C with the help of the EMOSL and XOSL
libraries of XPRESS [11]. To solve the linear programs, the primal simplex of
XPRESS-MP version 11.50O has been used. All runs have been carried out on
a 350Mhz PC machine with 128MB of RAM, running under Windows NT 4.
Appendix B contains the complete computational results.

6.1 Lotsizing problems

We compared IPE with seven other heuristics:

BBdepth This is the standard XPRESS B&B with depth �rst search, trun-
cated after 300 seconds. This corresponds to setting the XPRESS control
parameters ndsel1 equal to 3.

BBbound This B&B strategy iteratively selects the open node with the best
bound, then dives, selecting at each level the descendant node which has
the best bound. This correponds to setting the XPRESS control parame-
ters ndsel1 and ndsel2 equal to 1 and 3 respectively. The search is stopped
after a maximum running time of 300 seconds.

BBestimate This is the same as BBbound, but it selects the node with the
best estimate. This correponds to setting the XPRESS control parameters
ndsel1 and ndsel2 equal to 1 and 2 respectively, with a maximum time of
300 seconds.

Relax&Fix It is implemented exactly as described in section 3, with Q equal
to the number of periods.

CMSB This is the �rst part of the heuristic proposed in [16].

SSR This is CMSB, followed by the Simple Setup Reduction subroutine (see
[16]).

RR This is SSR, followed by the Reduced Setup Reduction and Reduced Inven-
tory Reduction subroutines (see [16]). RR corresponds to the full heuristic
proposed in [16].

The three �rst heuristics, BBdepth, BBbound and BBestimate, will be re-
ferred as branching heuristics in the sequel.

6.1.1 IPE versus other heuristics

Table 1 and 2 summarize the performance of the eight heuristics on all problems,
in terms of the quality of the solution found and the times respectively. The
value of the solutions is expressed as a percentage of the best solution known
for each problem, and the times as a percentage of IPE time. For the branching
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heuristics, the value of the solution found and the time taken are not well de�ned,
because these heuristics do not stop unless they prove optimality or they reach

the time limit. Because we want here to assess the performance of IPE, we de�ne
these concepts as follows: the value corresponds to the best solution found at
the moment IPE �nishes, while the time taken by the branching heuristics is
the time taken to �nd a solution at least as good as the one found by IPE.
For the other heuristics, the value of the solution found and the time taken are

well-de�ned.
Because for some problems no value is available (when no solution has been

found, the value is considered as in�nite), to simply average those values does
not make sense. Hence two ways of comparaison are presented : partial average
and ranking. In partial average, we only take into account those values which
are not more than 1000%. In ranking, we rank the heuristics from 1 to 8 for
each problem by their performance (a high value indicates a good performance).
Those ranking are then averaged, taking into account all models. The detailed
results for all test problems can be found in Appendix.

Considering the quality of the solution found (see Table 1), IPE appears to
perform best for both used criteria (partial average and rank). It should also
be noted that IPE is the only one to have found a solution to all problems.
Relax&Fix had diÆculties with the SimpEren problem augmented with the
XPRESS-MP cuts, while CMSB did not succeed to generate a feasible solution
for one model.

The results concerning the times are displayed at Table 2. The situation

is clear : the basic CMSB outperforms all others, but the price to pay is the
poorest quality. The basic CMSB is thus eliminated. Since the clear second for
time is IPE, both in terms of partial average and rank, the superiority of IPE
over other heuristics as a default algorithm to �nd feasible solutions is justi�ed.

Algorithm BBestim BBbound BBdepth IPE RR SSR CMSB Relax&Fix

partial average 129.6% 113.6% 125.1% 109.2% 115.7% 123.3% 142.0% 109.4%

rankings 3.72 4.10 3.03 6.40 4.62 3.41 2.34 6.10

% with no solutions 79% 72% 69% 100% 97% 97% 97% 88%

Table 1: Global quality performance

Algorithm BBestim BBbound BBdepth IPE RR SSR CMSB Relax&Fix

partial average 213.5% 245.2% 179.9% 100.0% 390.7% 387.0% 43.3% 179.2%

rankings 3.57 3.72 4.41 5.76 2.00 3.45 7.47 4.36

Table 2: Global time performance

However, a �ner analysis is obtained if one looks at the results for each of the
three groups (E, M and D) of problems seperately. Tables 3 summarizes those
results. Broadly, BB search strategies perform well for easier problems. Their
performance degrades on more diÆcult ones. Relax&Fix performs very well on
easy and medium problems. On the contrary, the absolute performance of IPE
does not deteriorate with the diÆculty of the problem, which translates in a bet-
ter rating compared to the other heuristics. IPE is less sensible to exponential
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Figure 2: Number of iterations for problems of various sizes

explosion. This fact is illustrated in Figure 2, which shows the number of itera-
tions needed to converge for all models of the test set. It does not increase with
the size of the problem, measured as the number of binary variables. Combined
with the fact that each iteration of IPE amounts to solve a linear program, this
explains the good performance on the more diÆcult problems of the test set.

Algorithm BBestim BBbound BBdepth IPE RR SSR CMSB Relax&Fix

E 4.50 5.70 4.10 5.40 2.90 2.10 1.60 6.20

M 3.90 5.40 3.60 5.40 4.35 3.00 1.75 7.70

D 3.32 2.61 2.25 7.46 5.43 4.18 3.04 4.93

Table 3: Inuence of problem diÆculty on the ranking of the quality

6.1.2 IPE and cuts

Tables 4 and 5 show the inuence of the cuts on the quality of the solution found
by the di�erent heuristics. Except for RR and SSR, the quality of the solution
improves with the strength of the cuts. Notice the di�erence in the results in
terms of partial average and rank for the XPRESS formulation between IPE and
Relax&Fix. This comes from the fact that partial average does not take into

account the XPRESS formulation of the SimEren problems for which Relax&Fix
did not �nd a solution.

There is however a di�erence between the BBestim, BBbound, BBdepth and
Relax&Fix on the one hand, and IPE, CMSB, SSR and RR on the other hand:
the heuristics from the �rst group may be described as curtailed Branch&Bound
schemes with speci�c node selection rules, while the other cannot. It is therefore
hardly surprising that strong cuts improve the quality of the solution found by
the procedure of the �rst group. What is more interesting is that other heuristics
which do not rely on branching, as IPE and CMSB, show the same behaviour.
The reason why this is not true for SSR and RR is that in these procedures, and
more precisely in what makes them di�erent from CMSB, the setup variables are
�xed, and therefore the cuts have no inuence anymore on the solution found.

Algorithm BBestim BBbound BBdepth IPE RR SSR CMSB Relax&Fix

LP 149.0% 124.2% 144.1% 111.1% 113.0% 126.4% 151.1% 116.7%

XPRESS 130.4% 115.0% 127.1% 110.4% 123.1% 127.1% 145.7% 106.4%

bc-prod 106.0% 103.0% 106.9% 104.4% 108.0% 112.2% 121.3% 101.1%

Table 4: Inuence of the presence of cuts on the quality of the solution found:
partial average
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Algorithm BBestim BBbound BBdepth IPE RR SSR CMSB Relax&Fix

LP 2.73 2.91 2.18 7.05 5.59 4.05 2.86 6.27

XPRESS 3.68 4.18 2.77 6.82 4.50 3.68 2.50 5.09

bc-prod 5.36 5.86 4.79 4.71 3.29 2.00 1.29 7.43

Table 5: Inuence of the presence of cuts on the quality of the solution found:
rankings

6.1.3 On the usefullness of primal heuristics in a B&C framework

The discussion of the previous section shows clearly that heuristics as IPE, as
opposed to branching rules, are especially important when the LP relaxation
is weak, or the problem is large. Within the �ve minutes allowed, the best
branching heuristic (BBestim) has only found a feasible solution of 79% of the
problems, and 43% of the diÆcult ones. One reason is that when the formulation
is weak, to �x a variable does not impose much constraint on the other variables.
As a consequence, one has to branch many times to reach a integral feasible
solution. But this makes more likely that no feasible or better solution will be
found, because one bad branching choice may prevent �nding good solutions.
Indeed, this is a trivial consequence of the fact that the tree grows when the
bounding device is weak.

This discussion indicates that branching is not the best technique to �nd
good feasible solution for large problems for which we do not have tight for-
mulations. This does not mean that branching should not be used anymore
altogether even in that case, because, along with cutting, it is a powerful device

to improve the dual bound. Rather, one should, before selecting a node and

branching, decide wether it is more interesting to try to improve the primal or
the dual bound. In the latter case, one can using cutting planes or branching
on the node with the best dual bound. If the former is choosen, then a branch-

ing heuristic, IPE, Relax&Fix or any other problem-dependent heuristic scheme
may be used. And the results presented in Section 6.1.1 show clearly that there
are some cases when branching is not the best choice to improve the primal
bound.

This is demonstrated on a fraction of the test set, namely the problems
of Trigeiro (trx-y) and the uncapacitated multi-level problems (multix). Two
formulations are considered for each problem: the standard formulation (1)-
(6) and the one augmented with the cuts of XPRESS11. Two algorithms are
compared, both running for a maximum time of 7200 seconds. The �rst one
is BBbound, the default strategy which has been tested in Sections 6.1.1 and
6.1.2. The second is a best bound search, with the added feature that if the
depth of the current node is a multiple of eight, BBIPE is performed. Note
that both algorithms use a common mechanism to improve the dual bound, i.e.
Branch&Bound with a best bound node selection rule, while they di�er only
in the way they generate feasible solutions: at each best bound node selection,
BBbound dives in the branching tree until a better solution is found or two
descendant nodes of the same parent are cut o�, while BBIPE performs IPE if
the depth of the node is a multiple of eight. The results can be found in Table
6, wherein the value of the solutions are expressed as a percentage of the best
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solution known.
Clearly, using IPE enables one to �nd better solutions faster. Indeed, the

reason why the dual bounds are di�erent, even though both procedures use the
same mechanism to improve it, is that BBCEPH spent less time on searching
for feasible solutions than BBbound.

nb. of sol. found �rst sol. best sol. best bound gap

BBbound 3.32 120% 107% 62% 45%

BBIPE 3.74 106% 102% 63% 38%

Table 6: Improvement when using IPE in the tree for lotsizing problems trx-y
and multix.

6.2 Network problems

Here, we would like to check if the same conclusions can be drawn for network
design problems as for lotsizing ones. For each network design problem prob-
lem, we have run the default mp-opt with and without cuts, and IPE on the
formulation (1)-(5), with and without the cuts generated by mp-opt with the
default parameters. The branching strategy used is BBbound, which appeared
to work best for lotsizing problems. It should be noted that Relax&Fix is no
longer applicable, because there is no natural ordering the variables such as the
time for production planning problems. Limited testing with a random ordering
has proven unworkable due to a high number of problems with no solution at
all. CMSB is still usable, but the two subsequent reduction subroutines cannot
be adapted, again because of the lack of ordering of the variables. CMSB alone
seemed as bad for network design problems as for lotsizing ones during early
experiments, and no further testing seemed worthwhile.

The table 7 shows the results obtained, the value of the solution of mp-opt
being the best solution found at the time IPE �nished. We used the same
measures of quality as for lotsizing problems, i.e. partial average and rankings.
As opposed to lotsizing problems, both heuristics found (at least) one solution
for nearly all problems. However, the feasibility problem of FCNF is easy: it
suÆces to check if the network ow problem with all arcs opened is feasible.
Both BBbound and IPE ran into numerical diÆculties for 3 problems. (see
results in Appendix).

For models without cuts, IPE outperforms BBbound in terms of quality:
it �nds a better solution for 56% of the problems. Durations are diÆcult to
compare, because for many problems, BBbound had not found a solution as
good as IPE within the 300 seconds allowed.

When the XPRESS cuts are used, the two schemes appear to perform
equally: IPE yields a better partial average, while BBbound outperforms IPE
on 52% of the problems. As for lotsizing problems, one concludes that IPE
performs comparatively well on big, loose formulations.

However, and in opposition to what was observed for lotsizing problems,
adding cuts seems to make the �nding of feasible solutions de�nitely more dif-
�cult. For both IPE and BBbound �nd worse solutions even though it took
longer to �nd them (on average 4.15 longer) : on average, IPE yields solutions
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for models with cuts wich are 5.9% worse than models without, and 3.1% for
BBbound.

Formulation LP LP + XPRESS cuts

Algorithm IPE BBbound IPE BBbound

Partial average 107.0% 111.1% 112.6% 113.6%

Ranking 1.56 1.44 1.48 1.52

Table 7: Network design problems: a comparaison of IPE and BBbound.

7 Conclusion and future research

In this paper, we have presented a new heuristic for MIPs in which all inte-
ger variables are binary setup variables. This Converging Production Estimate
Heuristic is particularly simple and can easily be implemented on various plat-
forms while applicable to a broad class of problems.

We have compared IPE to other heuristics, including B&B search with vari-
ous branching rules. The lotsizing test set includes multi-item multilevel capaci-
tated lotsizing problems with setup times and families of products, and di�erent
formulations for each problems (with more or less strong cuts). IPE is the only
heuristic which has found a feasible solution to all the problems within the �ve
minutes allowed. IPE outperforms clearly other schemes for large problems with
weak formulations, while for problems of small to medium size and/or good re-
formulations a Relax&Fix heuristic has proven better. Those two heuristics are
also attractive because they do not require the tuning of parameters. The fact
that the quality of the solution found by IPE improves with the strength of cuts
generated makes it a potential device to generate good feasible solutions when
doing Branch&Cut. This is has been shown experimentally. The experiments
on network design problems con�rm that IPE is a good choice for big problems,
while showing that the use of XPRESS cuts slows down considerably the search
for feasible solutions.

It remains to be studied if IPE could be adapted to other models. As men-
tioned in section 2, the generic model (1)-(5) does not contain such features as
variable lower bounds on production, start-ups or changeovers. Production in
batches of �xed size is also not part of it. More precisely, it would be interesting
to know if IPE still converges quickly to a feasible solution in such cases. Other
types of problems that can be modelled by (1)-(5) have not been tested, such as
location problems. The same idea could be also be used for other purposes, for
example the selection of the branching variable. Further testing of the approach
is therefore needed.
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A Test instances

A.1 Lotsizing

NI and NT stand for the number of items and the number of time periods re-
spectively. Then come the number of rows for the basic formulation, the number
of rows for the XPRESS formulation and �nally for the bc-prod formulation.
A blank means inapplicable, either because of an echelon stock formulation or
because the bc-prod cuts make the solution integer. #col and #ints are the to-
tal number of columns and the number of integer variables respectively. There
are two entries in the #ints column for the SimEren problems because setup
variables for individual items are better treated as continuous for BBs and Re-
lax&Fix heuristic (leaving the family-setup variables the only binary variables,
see [3]), while IPE and CMSB enforce them as integer. In columns 'cap', 'stp
time' and 'mlt', a X indicates whether the problem is capacitated, include setup
times and is multi-level respectively. Finally, the classi�cation as Easy, Medium
or DiÆcult of Section 5.1 is given.

Instance NI NT #rows #cols #ints cap stp time mlt class

basic xpress bc-prod basic xpress bc-prod

pp08a 8 8 137 228 252 240 64 M E E

set1ch 20 12 493 650 745 712 240 X M M E

tr6-15 6 15 196 307 346 270 90 X X M M E

tr6-30 6 30 391 529 659 540 180 X X D M E

tr12-15 12 15 376 511 661 540 180 X X D D D

tr12-30 12 30 751 959 1361 1080 360 X X D D M

tr24-15 24 15 736 940 1339 1080 360 X X D D M

tr24-30 24 30 1471 1817 2779 2130 720 X X D D M

SimErenA1 72 16 3313 3491 4150 3648 192/960 X X X M M M

SimErenA1en 72 16 4465 4680 3648 192/960 X X X M M

SimErenA2 72 16 3313 3486 4181 3648 192 /960 X X X M M M

SimErenA2en 72 16 4465 4679 3648 192/960 X X X M M

SimErenB1 80 16 3905 4107 4803 3872 288/1024 X X X D D M

SimErenB1en 80 16 4929 5145 3872 288/1024 X X X D D

SimErenB2 80 16 3905 4092 4898 3872 288/1024 X X X D D M

SimErenB2en 80 16 4929 5146 3872 288/1024 X X X D D

multia 40 12 973 1209 1920 480 X D M

multib 40 12 973 1190 1920 480 X M M

multic 40 12 973 1201 1920 480 X D M

multid 40 12 973 1734 1431 1920 480 X M M M

multie 40 12 493 636 728 960 240 X E E E

multif 40 12 373 494 720 180 X E E
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A.2 Network design

The type of the graphs used is given, along with the name, the number of nodes
and arcs, the number of source nodes and demand nodes, the total amount of
demand, and �nally whether the variable costs are zero or not. The capacitated
problems (g200x740, g55x188, k14x182, k16x240, p500x2988, p50x288, p30x160,
r50x360) have the same structure as their uncapacitated counterpart and are
not listed here.

Single-source problems

Type Name nodes arcs nsrc ndem totdem c = 0

Steiner beasleyC1 500 1250 1 4 4 X
beasleyC2 500 1250 1 9 9 X
beasleyC3 500 1250 1 82 82 X
berlin 52 2652 1 15 15 X
brasil 58 3306 1 24 24 X
mc11 400 1520 1 212 212 X
mc7 400 1520 1 169 169 X
mc8 400 1520 1 187 187 X

Multi-Segment beavma 89 195 70 1 14505
mtest4ma 100 975 70 1 3959
g150x1100 150 1100 1 50 1000
g150x1650 150 1650 1 50 1000
k15x420 15 420 1 14 95
k15x630 15 630 1 14 95
p50x576 50 576 1 30 968
p50x864 50 864 1 30 968

MIPLIB �xnet6 100 500 1 80 500

Grid g200x740c 200 740 1 30 10000
g200x740d 200 740 1 100 10000
g200x740e 200 740 1 150 10000
g200x740f 200 740 1 199 10000
g180x666 180 666 1 150 10000
g55x188c 55 188 1 30 1000

Kn + 1 h50x2450 50 2450 1 49 277
h50x2450b 50 2450 1 49 303
h50x2450c 50 2450 1 44 252
h50x2450e 50 2450 1 44 253
h80x6320 80 6320 1 74 408
h80x6320b 80 6320 1 69 354
h80x6320c 80 6320 1 71 396
h80x6320d 80 6320 1 68 384

Complete k15x210 15 210 1 14 95
k20x380b 20 380 1 10 89
k20x380c 20 380 1 15 100
k20x380d 20 380 1 19 91
k20x380e 20 380 1 5 100

Planar p100x588c 100 588 1 5 673
p100x588d 100 588 1 5 673 X
p200x1188c 200 1188 1 6 140 X
p500x2988c 500 2988 1 6 606
p500x2988d 500 2988 1 6 606 X
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Multi-source problems

Type Name nodes arcs nsrc ndem totdem c=0

Grid g200x740 200 740 100 10 1500
g200x740b 200 740 10 80 1000
g200x740g 200 740 100 100 1000
g200x740h 200 740 100 100 10000
g200x740i 200 740 100 100 200
g40x132 40 132 10 15 934
g50x170 50 170 13 18 1000
g55x188 55 188 17 14 1000

Complete k10x90 10 90 6 4 100
k14x182 14 182 4 6 1000
k14x182b 14 182 10 2 1000
k16x240 16 240 10 5 794
k16x240b 16 240 8 8 1000
k20x380 20 380 10 6 437

Planar p100x588 100 588 40 25 900
p100x588b 100 588 40 25 900
p200x1188 200 1188 40 25 900
p200x1188b 200 1188 40 25 900
p500x2988 500 2988 80 40 10000
p500x2988b 500 2988 80 40 10000
p50x288 50 288 10 15 500
p50x288b 50 288 10 15 500
p80x400 80 400 30 15 800
p80x400b 80 400 30 15 800

Random r20x100 20 100 8 8 1000
r20x200 20 200 8 8 1000
r30x160 30 160 10 8 1000
r50x360 50 360 30 15 100
r80x800 80 800 40 25 944

Series-Parallel sp100x200 100 200 14 11 51
sp150x300 150 300 11 13 90
sp150x300b 150 300 15 23 313 X
sp150x300c 150 300 18 26 1174
sp150x300d 150 300 18 33 1135 X
sp50x100 50 100 18 21 776
sp80x160 80 160 4 10 47
sp90x180 90 180 16 16 309
sp90x250 90 250 13 14 122
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B Complete computational results

The �ve following tables report the complete computational results.
Table 8 gives the value of the solutions found by the di�erent heuristics,

while the Table 9 gives the times for the same runs. Both tables are organized
as follows: the �rst column is the name of the problem, the second speci�es by
which cut generator the basic formulation has been tightened, and the remaining
gives the value of the solution found or the time in seconds needed by the
considered heursitic. For the branching heuristics, the values of the solution
found are the best solution found at the time IPE had �nished, while the time
is the time needed to �nd a solution at least as good as that of IPE.

In Tables 10, 11 and 12 are presented the complete computational results
for the network design problems. The three Tables are organized as follows:
the �rst column contains the name of the instance, the next group of four
columns gives the value of the solution found by the routine speci�ed by the
�rst three rows, and the last four do the same for the times needed. As for
lotsizing problems, the 'time' of BBbound is the time needed to �nd a solution
at least as good as the one of IPE. There was no solution found by BBbound for
g150x1100, g200x740d and g200x740e (XPRESS formulation) due to sensitivity
to the numerical zero tolerances. Also, no solutions has been found by IPE for
r80x800 and p500x2988b (XPRESS formulation) due to the diÆculty of some
LP relaxation. Those entries are indicated by "no sol.". All other blank entries
mean that the initial LP relaxation was integer and there was thus no need for
heuristics.
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BBestim Bbbound Bbdepth IPE RR SSR CMSB Relax&Fix

pp08a basic 8160 7720 8160 8040 8150 8320 9120 7580

XPRESS 7710 7690 7710 8020 8620 8840.03 9030.01 7870

bc-prod 7370 7370 7350 7790 8020 8120 8780 7460

set1ch basic 60913 63236.5 60913 69945.75 63538.5 71295 88924.25 55977

XPRESS 60761.8 58997.6 60761.8 60038 59157.3 61664.05 68801.56 55032

bc-prod 54672.5 54672.5 54672.5 55420.5 58119.75 59900.25 61556 54672.5

tr6-15 basic 40641 no sol. 39762 40248 42263 43308 46183 40567

XPRESS 39798.2 40852 40096.2 38976 40359.24 43787.21 44741.1 39777.25

bc-prod 37801 38044 38502 39039 39154 40469 40469 37984

tr6-30 basic no sol. no sol. no sol. 65632 69977 71594 78563 66059

XPRESS 66754.2 65736 66754.2 63073 67939.37 69408.25 74126.13 63124.2

bc-prod 63298 63369 63446 64370 65224 66068 69097 62459

tr12-15 basic no sol. no sol. no sol. 79352.1 88607 97233 101741 83649

XPRESS no sol. 84186 no sol. 79825.3 90101.16 100721.1 102688.1 80730.1

bc-prod no sol. 78117 no sol. 78098 77615 77885 77885 74761.9

tr12-30 basic no sol. no sol. no sol. 138650 no sol. no sol. no sol. 142488

XPRESS no sol. 144943 no sol. 136883.3 150214.3 151459.3 161850.3 142087

bc-prod 132822 131384 132545 131988 136553 137290 142581 130957

tr24-15 basic no sol. no sol. no sol. 144370 152342 157293 180928 146185

XPRESS no sol. no sol. no sol. 139593.6 160459.5 171061.4 174042.1 143541.1

bc-prod 136968 136820 137268 137153 139122 140363 143012 136636

tr24-30 basic no sol. no sol. no sol. 303800 324084 336098 382422 309084

XPRESS no sol. no sol. no sol. 301778.5 342587.9 360611.6 382258.4 no sol.

bc-prod 288550 288097 288768 290006 293423 294349 297891 288035

A1C1S1 basic 13599.3 13642.8 13728.1 13458.1 13467.7 13884.7 17314.6 13559.5

XPRESS 13249.3 13609.5 13737.2 12969.2 13652 13737.9 15984 no sol.

bc-prod 12159.1 12055 12128.6 12440.2 12973.6 13339.6 14322.3 12029.16

A1C1S1en basic 13597.9 13642.8 13726.6 13556.2 13408.3 13992.6 16965.6 13559

XPRESS 13667.2 13929.1 13984.6 12722.4 14117 14303.2 16837.5 no sol.

A2C1S1 basic 13802.2 13124.3 13705.9 12984 13144.8 13740.5 17102.6 12216

XPRESS 13564.4 12558.8 13302.6 13014.1 14514.8 14514.8 18346.4 no sol.

bc-prod 11280 11310.3 11695.2 11467.7 11834.9 11838.4 13915 10963.9

A2C1S1en basic 13973.4 13441.7 13705.9 13434.5 13882.3 14393.3 17055.3 12216

XPRESS 12679.1 12779.9 13680.8 12862.7 14172.5 14172.5 17298.62 no sol.

B1C1S1 basic 46815 no sol. no sol. 27089.1 27955.9 38119.6 61852.6 38800.41

XPRESS no sol. no sol. no sol. 29313.2 40787.1 40787.1 59436.2 no sol.

bc-prod 25089.9 25396.9 28886 25497.2 29024.4 36779.1 48056 25395.72

B1C1S1en basic 46381.3 no sol. no sol. 29712.9 30596.2 48915.3 62957.2 38800.41

XPRESS 39716.8 no sol. no sol. 29769.7 45371.2 45371.2 50015.2 28502.42

B2C1S1 basic 34327.7 no sol. no sol. 29225.6 30089.9 43707.2 59717 33591.7

XPRESS no sol. no sol. no sol. 32003.9 45348.9 45922.8 53295.5 32160.55

bc-prod 30964.5 30272.8 28689.8 31037.5 30868.3 33258.5 38994.6 27973.3

B2C1S1en basic 38052.1 no sol. no sol. 32774.9 33727.1 48568.9 59457.1 33540.22

XPRESS 42937.3 no sol. no sol. 31668.5 no sol. no sol. no sol. no sol.

multia basic 8353 8454 8353 5219 4702 4702 5899 6597

XPRESS 6277 6641 6277 5034 5050.03 5050.03 7862 4970

multib basic 6004 5887 6004 4318 4203 4203 4318 4376

XPRESS 4591 5013 4591 4447 3911.01 3911.01 4375.01 3788

multic basic 6686 5934 6686 4255 3982 3982 4819 5066

XPRESS 5281 5578 5281 4646 4330.03 4330.03 6244 4000

multid basic 33830.8 13523 33830.8 12802.5 13037.76 13037.76 13420.25 13446

XPRESS 13686.8 12876 13686.8 13463 12998.2 12998.2 13034.57 12907.6

bc-prod 18283.8 13438.1 18283.8 13348.5 202690 214085 214085 12875

multie basic 49754.25 2625.5 49754.25 2625.5 2797.75 2797.75 2797.75 2625.5

XPRESS 2701.36 2673 2701.4 2673 3407.09 4219.58 4219.58 2949.2

bc-prod 2761.75 2761.75 2761.75 2749.75 2992 2992 2992 2633.5

multif basic 89076 1444 89076 1440 1473 1473 1484 1440

XPRESS 3818.8 1473 3818.8 1440 1473 1473 1473 1440

Table 8: Lotsizing problems: value of the solutions
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Bbestim Bbbound Bbdepth IPE RR SSR CMSB Relax&Fix

pp08a basic 11 0.47 0.3 0.49 1.3 0.49 0.14 0.5

XPRESS 0.5 0.4 0.5 0.48 1.47 0.73 0.32 8.6

bc-prod 0.3 0.5 0.6 0.74 1.57 0.91 0.47 0.9

set1ch basic 1 2.5 1 0.84 9.09 2.56 0.28 0.91

XPRESS 4.5 1.3 1 1.56 9.76 2.81 0.44 3.05

bc-prod 0.5 0.7 1.1 1.26 8.38 2.9 0.94 1.08

tr6-15 basic 0.7 8.5 1.2 1.06 2.13 1 0.17 0.66

XPRESS 4.3 123 1 1.2 3.36 2.05 0.32 2.36

bc-prod 1 0.85 1 1.31 3.19 1.24 0.32 1.27

tr6-30 basic no sol. 1.5 no sol. 2.54 5.12 2.55 0.28 1.81

XPRESS no sol. 1 1 2.76 7.24 2.99 0.31 4.54

bc-prod 1.1 1.8 1.5 1.7 9.56 3.6 0.59 3.92

tr12-15 basic no sol. no sol. no sol. 2.49 7.32 3.66 0.22 1.46

XPRESS no sol. 181 no sol. 3.44 10.43 4.73 0.44 4.2

bc-prod no sol. 5.5 no sol. 3.53 11.43 5.56 0.99 2.94

tr12-30 basic no sol. no sol. no sol. 6.58 no sol. no sol. no sol. 4.09

XPRESS no sol. 216 no sol. 9.12 14.47 9.13 1.33 12.5

bc-prod 6.5 2.5 3.5 6.03 33.83 14.02 2.72 13.12

tr24-15 basic no sol. no sol. no sol. 8.34 21.65 9.88 0.65 1.91

XPRESS no sol. no sol. no sol. 8.82 25.25 11.31 0.98 21.6

bc-prod 5.2 3 5.8 6.01 33.08 14.12 1.87 5.32

tr24-30 basic no sol. no sol. no sol. 32.73 73.19 32.49 1.13 7.69

XPRESS no sol. no sol. no sol. 35.65 85.06 37.87 2.19 no sol.

bc-prod 6.5 6.5 14 21.15 129.91 63.07 6.18 18.9

A1C1S1 basic 144 57 17 28.8 499 313.6 17.64 34.5

XPRESS 279 263 13 52.2 648.1 419.3 11.81 no sol.

bc-prod 38 39 65 201.5 1864.5 1141.5 56.8 197.73

A1C1S1en basic 35 64 20 31.5 496.5 360.1 19.92 38.8

XPRESS 295 176 48 54 688.8 462.5 21.5 no sol.

A2C1S1 basic 46 159 12 29.2 428 276.5 13.71 45.9

XPRESS 32 16 9 40.2 456.2 289.4 14.46 no sol.

bc-prod 87 106 189 190 1545.1 837.1 48.62 146.95

A2C1S1en basic 258 25 12 23.1 388 286.9 13.72 46.1

XPRESS 37 18 13 49.8 851.9 693.9 17.88 no sol.

B1C1S1 basic 296 no sol. no sol. 22.9 713.8 418.2 17.36 42.68

XPRESS no sol. no sol. no sol. 65.6 1099.7 569.5 30.48 no sol.

bc-prod 113 176 50 224.17 3377.8 1596.3 100.5 159

B1C1S1en basic 275 no sol. no sol. 29.6 762.5 477.6 21.55 46.21

XPRESS 93 no sol. no sol. 49.6 1052.4 575.4 20.86 49.9

B2C1S1 basic 93 no sol. no sol. 55 982.8 563.4 26.87 53.8

XPRESS no sol. no sol. no sol. 62.5 1565.5 916.2 35.11 76.31

bc-prod 86 78 97 296.9 3923.1 1984.7 106.88 228.4

B2C1S1en basic 49 no sol. no sol. 32.9 1080.2 635.8 30.94 62.65

XPRESS 220 no sol. no sol. 58.4 no sol. no sol. no sol. no sol.

multia basic 70 11 5 0.64 21.49 5.23 0.35 2.31

XPRESS 64 83 3 0.83 39.49 5.71 0.69 8.33

multib basic 17 155 6 0.47 27.45 6.97 0.5 2.31

XPRESS 12 8 4 0.91 37.9 7.79 0.55 17.9

multic basic 26 11 5 1.46 28.66 5.01 0.57 2.44

XPRESS 9.5 38 4 0.93 40.42 6.18 0.79 23.36

multid basic 16 28 8 0.85 73.92 24.61 0.49 9.41

XPRESS 47 12 10 2.02 102.77 30.86 0.96 24.99

bc-prod 54 16 4 5.08 98.35 18.36 4.59 14.3

multie basic 10 3 2 0.35 12.9 5.82 0.18 2.45

XPRESS 5 1.7 2 0.67 25.96 7.47 0.54 4.65

bc-prod 2.1 2.5 1 1.6 23.96 6.41 0.75 4.97

multif basic 7 2 1 0.3 6.76 2.66 0.13 1.62

XPRESS 2.2 1 1 0.55 8.93 3.51 0.14 0.86

Table 9: Lotsizing problems: times
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Value Times

basic XPRESS basic XPRESS

BBbound IPE BBbound IPE BBbound IPE BBbound IPE

beasleyC1 92 102 87 124 0.5 4.66 39 11.91

beasleyC2 167 171 167 193 1 8.11 1 9.92

beasleyC3 825 814 864 887 160 7.34 5 11.83

berlin 1542 1300 1906 1595 >300 50.53 >300 115.68

brasil 20047 16569 25619 27352 >300 281.25 51 115.57

mc11 12351 13057 23009 12979 6 8.89 >300 20.9

mc7 3989 4353 4428 4267 6 11.16 63 19.01

mc8 1656 1717 3170 1815 7 10.95 >300 24.64

beavma 410860 399425 383746 383285 161 0.46 0.5 0.37

mtest4ma 60342 52768 53679 53127 >300 2.04 22 4.18

g150x1100 84407 79492 no sol. 88826 >300 5.72 no sol. 141.05

g150x1650 85250 74691 76023 82778 >300 13.64 2 244.71

k15x420 875 843 819 909 35 1.51 0.5 9.79

k15x630 993 1037 936 947 1 2.34 0.5 2.93

p50x576 20462 19727 19742 19627 >300 1.86 3 2.93

p50x864 20236 19776 19173 19007 51 2.41 1 0.81

�xnet6 11012 4296 6316 4284 >300 1.84 49 3.22

g180x666 629603 638930 639783 633839 1 1.4 >300 4.47

g200x740c 681920 681972 681079 680624 0.7 0.73 18 1.34

g200x740d 589241 589150 no sol. 586227 5 1.36 no sol. 2.09

g200x740e 604423 604179 no sol. 600714 >300 1.59 no sol. 4.24

g55x188c 39085 36690 35464 35509 >300 0.53 0.5 0.51

h50x2450 437328 458026 553144 489175 1 24.61 >300 44.04

h50x2450b 56.09 53.8 68.22 67.27 >300 21.2 153 44.96

h50x2450c 3168 3184 3621 3497 1 53.24 >300 129.06

h50x2450e 3190 3194 3680 3843 36 51.48 1 128.74

h80x6320 5087 4913 6134 5541 >2000 414.13 >3000 1787

h80x6320b 4502 4293 4882 4811 >2000 426.59 >3000 1291

h80x6320c 4755 4704 5281 5056 >2000 409.65 >3000 1250.1

h80x6320d 5118 4796 5698 5433 >2000 408.03 >3000 1454.3

k15x210 17820 18244 16128 16180 0.5 2.01 0.5 0.93

k20x380b 11949 12337 1 3.37

k20x380c 19374 18791 17159 22385 18 3.96 1 26.94

k20x380d 22546 25977 20979 20979 0.5 3.71 1 1.39

k20x380e 7377 7818 1 2.03

p100x588c 173598 180220 172770 173742 3 6.43 0.5 7.86

p100x588d 5 5 6 6 0.5 4.9 4 6.03

p200x1188c 15531 15747 15078 29037 0.5 12.42 0.5 48.02

p500x2988c 15215 15215 15323 15215 9 9.06 9 1.57

p500x2988d 6 6 6 10 2 53.74 0.5 219.8

Table 10: Uncapacitated single-source network design problems: results
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Value Times

basic XPRESS basic XPRESS

BBbound IPE BBbound IPE BBbound IPE BBbound IPE

g200x740 45301 46066 45022 44734 1 3.77 136 14.09

g200x740b 183819 183253 182513 181256 >300 1.9 >300 8.11

g200x740g 57121 49093 59279 48065 >300 4.62 >300 107.65

g200x740h 137235 136966 int infeasible 134583 7 5.58 53.79

g200x740i 43439 34002 44080 34343 >300 4.05 >300 100.27

g40x132 27818 27588 27432 27484 3 0.8 1 1.89

g50x170 31631 28765 30209 26072 20 0.94 52 0.88

g55x188 29296 26808 27966 25327 >300 0.87 46 1.83

k10x90 576 589 579 582 0.1 0.97 0.5 0.61

k14x182 8615 8491 8570 10465 37 3.83 0.3 10.5

k14x182b 11260 11561 11064 12379 1 1.72 0.3 2.12

k16x240 11028 11715 11655 14630 0.2 5.55 0.5 26.86

k16x240b 12444 13552 13139 13564 0.2 5.46 4 27.73

k20x380 2038 2177 2025 2695 0.1 4.95 0.5 36.55

p200x1188 11716 12313 12023 12297 1 16.68 9 156.77

p200x1188b 70416 65363 65382 65777 >300 15.67 47 233.65

p500x2988 72267 72287 73200 72662 3 9.09 >300 263.24

p500x2988b 192524 197333 no sol. 4 89.12 no sol.

p50x288 6377 6522 6216 6447 0.1 2.4 1 5.2

p50x288b 25389 23261 22440 23133 >300 2.34 0.5 5.67

p80x400 8796 8855 8939 8748 0.2 2.71 >300 10.04

p80x400b 45523 43387 42850 43685 >300 3.66 14 15.33

r20x100 17255 17335 16528 17205 1 1.51 1 1.52

r20x200 15151 16934 17626 17523 0.2 4.38 13 10.95

r30x160 24008 24244 24078 24127 1 1.69 1 2.31

r50x360 1885 1803 1836 1914 >300 3.42 13 72.07

r80x800 5447 5645 no sol. 0.5 14.39 no sol.

sp100x200 38503 35209 37356 34805 >300 0.6 3 0.38

sp150x300 32289 30918 34766 33178 >300 0.75 6 1.35

sp150x300b 58 60 58 60 0.5 1.44 0.5 2.56

sp150x300c 585371 590384 579970 572297 0.5 0.6 2 0.66

sp150x300d 69 71 72 71 0.5 0.98 4 1.6

sp50x100 51129 51489 50968 50968 0.3 0.33

sp80x160 20245 22124 19549 19549 0.3 0.42 0.21 0.21

sp90x180 70588 69236 69798 68862 >300 0.86 1 0.33

sp90x250 28867 23844 23571 23571 >300 0.72 0.23 0.23

Table 11: Uncapacitated multi-source network design problems: results

Value Times

basic XPRESS basic XPRESS

BBbound IPE BBbound IPE BBbound IPE BBbound IPE

g200x740j 50637 48256 47613 47944 >300 2.98 14 22.96

g55x188d 35551 30699 29407 30215 134 0.56 1 1.42

k14x182c 21379 21103 19590 20718 3 1.76 1 3.72

k16x240c 17727 16284 14794 18496 91 1.41 3 9.74

p500x2988e 1E+09 72016 74261 72152 >300 6.66 >300 27.65

p50x288c 10497 10356 9844 10040 3 1.31 1 2.42

p80x400b 27928 23618 23519 23311 >300 2.07 5 2.41

r50x360b 2267 1879 1852 1872 >300 1.65 6 11.34

Table 12: Capacitated network design problems: results
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