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1. INTRODUCTION

For many years the principal solution technique used in the practice
of mixed-integer programming has remained largely unchanged: Linear
programming based branch-and-bound, introduced by Land and Doig
(1960). This, in spite of the fact that there has been signi�cant progress
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in the theory of integer programming and in the closely related �eld
of combinatorial optimization. Many of the ideas developed there have
received extensive computational testing, but, until recently, relatively
little of that work has made it into the commercial codes used by prac-
titioners. That situation has now changed. Several such codes, among
them LINGO1, OSL2, and XPRESS-MP3, as well as the CPLEX4 code
studied in this paper, now include cutting-plane capabilities as well as
other ideas from the backlog of accumulated theory. As suggested by
the title of this paper, the gap between theory and practice is indeed
closing.
In order to �x ideas, we begin with a formal de�nition. A mixed-

integer program (MIP) is an optimization problem of the form

minimize cTx

subject to Ax = b

l � x � u

some or all xj integral,

where A is an m�n matrix, called the constraint matrix, x is a vector of
variables, c is the objective function, and l and u are vectors of bounds.
Thus, a MIP is a linear program (LP) plus an integrality restriction on
some or all of the variables. This last restriction is what makes MIPs
di�cult (NP-hard, in the technical sense); it takes a well understood,
convex problem and makes it non-convex. It also makes the mixed-
integer modeling paradigm a powerful tool in representing real-world
business applications.
The power of the mixed-integer modeling paradigm was recognized

almost immediately, dating back to the 50s and 60s, and numerous
attempts were made to apply it. Unfortunately, while the modeling
paradigm was strong, the available software and computers for solving
the models were not. The result was disillusionment, some of which per-
sists to this day. Many potential practitioners still believe that mixed-
integer programming is nice to talk about, but has limited practical
applicability. An important message of this paper is that this situation
has changed, and changed dramatically just in the last year. It is now
possible to solve many di�cult, interesting, and practical mixed-integer
models using o�-the-shelf software.
The following is an outline of the contents of the paper. We begin

with a discussion of advances in methods for solving linear programming

1LINGO is a trademark of Lindo Systems, Inc.
2OSL is a trademark of IBM Corporation
3XPRESS-MP is a trademark Dash Associates Ltd.
4CPLEX is a trademark of ILOG, Inc.
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problems. First we give a snapshot overview of developments in the pe-
riod from the mid-80s to 1998, and then we look at 1999. One reason to
begin with linear programming, rather than directly with mixed-integer
programming, is that linear programming is an enabling technology for
solving MIPs. Given this �rst reason, the real motivation for including
a discussion of linear programming here is that 1999 has seen some re-
markable and unexpected improvements in the classical simplex method.
The discussion of linear programming will be followed by the mixed-

integer programming part of the paper. The presentation emphasizes
features. Speci�c topics to be discussed will include node presolve,
heuristics for �nding feasible solutions, and cutting planes. These will
be followed by extensive computational results.
The discussion of mixed-integer programming features can be viewed

as having two main parts. The �rst discusses features that attempt
to decrease the \upper bound" (e.g., heuristics to �nd better integral
solutions). The second discusses features that attempt to increase the
lower bound (e.g., cutting planes). When the upper and lower bounds
become equal, the computation is �nished.
An important guiding principle of our mixed-integer algorithmic de-

velopments is that solving MIPs often requires a \barrage" of di�erent,
but cooperating ideas. In other words, we try to take advantage of struc-
tures that are common to many real-world MIPs, hoping that some or
all will contribute to a better solution for a particular model. To do so,
it is essential to develop good defaults, and implement the individual
ideas in such a way that they help when they can, and otherwise hurt as
little as possible. This approach is perhaps di�erent from that of most
theoretical investigations, where the goal is typically to demonstrate the
e�cacy of a particular new idea, usually in isolation.
Finally, we consider several examples. Two of these examples will

provide a counterbalance to the idea that good defaults are su�cient
to handle all models. While we would like to run mixed-integer pro-
gramming codes much as we run linear-programming codes, as black
boxes, there will always be instances that demand some sort of tuning
or reformulation.
We close this section with one general remark. For many of the com-

putational results presented in this paper, we will use geometric means
as a method to summarize results. On occasion, when doing so, we will
simply use the word \mean." This usage will always refer to the geo-
metric mean, and not the more common arithmetic mean. Arithmetic
means can be quite misleading when applied to a set of ratios, as would
often be the case in this paper.
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2. LINEAR PROGRAMMING

2.1. PROGRESS SOLVING LPS: MID-80S TO
1998

No attempt is made here to discuss linear-programming improvements
in this period in detail. We will present just one table, followed by a
brief discussion. A detailed discussion is a topic unto itself.
As the following table illustrates, over the past ten years there has

been steady progress in our ability to solve linear programming prob-
lems5.

Model: PDS-30, Patient Distribution System
49944 rows, 177628 columns, 393657 nonzeros

Version Time (seconds)

CPLEX 1.0 (1988) 57840
CPLEX 3.0 (1994) 4555
CPLEX 5.0 (1996) 3835

The model PDS-30 is one of a class of models introduced in Carolan,
et al., (1990), and is well-known within the linear-programming commu-
nity. For reasons that are hopefully apparent given the CPLEX 1.0 data
in the table, the larger instances in this class (e.g., PDS-30) were con-
sidered very di�cult when �rst introduced. The runtimes in the table
were produced using a modern workstation, a 296 MHz Sun UltraSparc.
Considering the improvement in machine speeds between 1990 and the
present, probably exceeding a multiple of 1,000, describing this model
as being very di�cult in 1990 is an understatement.
Some remarks are in order before we move on to the developments

of the last year. First, while it is not illustrated in this table, the �rst
release of CPLEX was already a signi�cant improvement over at least
one of the standard portable codes available at that time, XMP devel-
oped by Marsten (1981). Thus, the �fteen-fold improvement for the one
problem in the table in the period 1988 to 1998 can be viewed as an un-
derestimate. Second, and much more important in our view, the most
signi�cant development of the last decade is not really reected in this

5In CPLEX 1.0 only a primal simplex algorithm was available. In subsequent versions,
primal and dual simplex algorithms, and a barrier algorithm were available. We used the
dual simplex algorithm when solving PDS-30 with CPLEX 3.0 and 5.0.
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table. This development was the leap forward in robustness of linear
programming codes. They have not only become more robust in terms
of solve times, but also much more robust at handling numerical di�cul-
ties and problems related to degeneracy. In short, linear programming
has become more-and-more a tool that practitioners can simply use, em-
bedding it as a black box in other applications without having to worry
whether it will do its job.

2.2. PROGRESS SOLVING LPS: 1999

We began the work described in this section by making a simple ob-
servation: LPs have become larger. This is the same sort of observation
that was made ten years ago at the start of the developments highlighted
in the previous section. Here it led us to focus speci�cally on models
with at least 10,000 constraints. It also led us to focus on the simplex
method, since it was the simplex method that seemed to be underper-
forming on these large models. It didn't take long to discover where the
bottleneck lay: The solution of the two (sometimes three) linear systems
that are necessary at each simplex iteration. These linear systems are
commonly called BTRAN and FTRAN (see Chvat�al (1983)).
It is not strictly necessary to know what the FTRAN and BTRAN

systems refer to here. The basic idea is quite simple. Imagine we are
to solve a large linear system Lx = a, where L is a triangular matrix,
a is extremely sparse, and x turns out to be very sparse as well. Both
vectors often have fewer than 100 nonzeros among them, in spite of
the fact that L is of order 10,000 or more (corresponding to a linear
programming problem with 10,000 or more constraints). Clearly, when
a and x contain this few nonzeros, it is unlikely that the cause was
cancellation during the solve; more likely is that the number of nonzeros
touched in L, in order to compute x, was very small as well. Thus,
the key to reducing the cost of the solve is to do it in an amount of
time linear in this number of nonzeros. As it turns out, though this fact
was apparently not being exploited in linear programming codes, the
existence of such an algorithm has long been known in the sparse linear
algebra community. It is equivalent to a certain, natural reachability
problem in a graph. See Gilbert and Peierls (1988).
When the above bottleneck was removed, it then made possible fur-

ther improvements to the simplex method itself. This is where the real
progress occurred. Two examples:

The dual simplex algorithm: It can be shown that variables
with two �nite bounds often do not need to be binding in the ratio
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test. Exploiting that fact leads to what one might call a \long-
step" dual simplex algorithm.

Fast pricing update: If the solutions of the key linear systems
at each iteration are sparse, then it is reasonable to expect that
only a small number of reduced costs will change, and hence that
appropriate update schemes can be introduced to accelerate the
choices of entering and leaving variables in the primal and dual
simplex algorithms, respectively.

For PDS-30, the resulting improvement is signi�cant indeed:

Model: PDS-30, Patient Distribution System
49944 rows, 177628 columns, 393657 nonzeros

Version Time (seconds)

CPLEX 1.0 (1988) 57840
CPLEX 3.0 (1994) 4555
CPLEX 5.0 (1996) 3835
CPLEX 6.5 (1999) 165

Of course, PDS-30 is just one problem, used here as an illustra-
tion. Much more extensive tests were done to evaluate the e�ects of
the changes introduced with CPLEX 6.5. In addition to the changes
outlined above for the simplex method, there were also important, if not
quite as dramatic, improvements in the barrier implementations. These
barrier improvements can be summarized as due to two things: (a) Bet-
ter ordering algorithms for the computation of the Cholesky factoriza-
tion, see Rothberg and Hendrickson (1998), and (b) better exploitation
of the available level-two cache in modern computing architectures, see
Rothberg and Gupta (1991).
In what follows, an extensive set of test results are given to evaluate

the performance improvements in CPLEX 6.5. The results are broken
into two parts: Small models and large models. Before plunging into the
details, it is perhaps worthwhile to point out the philosophy of the way
the improvements were implemented. The overall target was \robustness
and scalability" in the algorithms. At least as important as making
the algorithms better on larger models was that performance did not
degrade, and hopefully improved, on the broad middle-range of models
that dominate in practice. Indeed, while the improvements on large
models were exciting and were the impetus behind this work, the real
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e�ort was expended in making sure that these improvements didn't get
in the way when they didn't help. The same theme was mentioned earlier
for mixed-integer programming.

2.3. PERFORMANCE ON SMALL LPS

Using a 400 MHz Pentium II running a Linux operating system,
CPLEX 5.0 was run on all models in the CPLEX library of linear pro-
gramming problems, a library that has been collected over a period now
exceeding ten years. For each of the primal and dual simplex algorithms,
we collected all the models that had solve times of less than 100 seconds
using CPLEX 5.0. Performance on these models was then compared
to CPLEX 6.5. The following table summarizes the results, where, as
discussed below, a ratio bigger than 1.0 means that 6.5 was faster than
5.0:

Performance Improvements: Small LPs
CPLEX 5.0 to 6.5

Segment Primal Ratio Number Dual Ratio Number

0 to 1 secs 1.02 145 1.02 139
1 to 10 secs 1.36 99 1.42 101
10 to 100 secs 1.59 87 1.88 102

Thus, for example, there were 99 models where the solve time with 5.0
using primal simplex was at least 1 second and no more than 10 seconds
(and 101 such models for dual simplex). For primal simplex, taking the
solve time for each model with 5.0 and dividing it by the solve time for
6.5 resulted in 99 ratios of solve times. Computing the geometric mean
of these ratios gave a value of 1.36. Similarly, for the dual the computed
mean was 1.42. Thus, based upon this last number, one might say
that for models in the 1 to 10 seconds segment, the 6.5 dual was 42%
faster than the 5.0 dual. These results were a pleasant surprise. It was
only for larger models that we were certain there would be substantial
improvements.
Below, for completeness, we also list some size statistics for the above

groups, using both the geometric mean and the median. These are
problem sizes after presolve was applied, where presolve refers to a set
of problem reduction routines applied prior to calling the optimization
routines. Some of the original, unpresolve model sizes are quite substan-
tial and would be misleading in the current context. See Brearley, et al.
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(1975), and Anderson and Anderson (1995) for a discussion of presolve
reductions.

Problem Sizes

Primal Simplex

Means Medians

Rows Cols Nonzeros Rows Cols Nonzeros

0 to 1 secs 307 556 3379 337 491 2667
1 to 10 secs 1396 3316 17046 1357 2814 15114
10 to 100 secs 2774 9060 53962 3016 6912 43298

Dual Simplex

Means Medians

Rows Cols Nonzeros Rows Cols Nonzeros

0 to 1 secs 287 488 2919 323 515 2961
1 to 10 secs 1424 2973 15927 1377 2814 14295
10 to 100 secs 2824 7597 45860 3266 6831 41402

As one �nal statistic, we give the geometric means of the solve times
using CPLEX 6.5 for each of the above groups, using primal and dual:

CPLEX 6.5: Mean Solution Times (seconds)

Segment Primal Simplex Dual Simplex

0 to 1 secs 0.2 0.1
1 to 10 secs 2.4 2.3
10 to 100 secs 19.5 17.4

2.4. PERFORMANCE ON LARGE LPS

We also went through the entire CPLEX library of LPs, previously
mentioned, and collected all instances which, after application of CPLEX
5.0 presolve, had at least 10,000 rows. From these models an attempt
was made to remove those that appeared to be just minor variations
on other models in the collection. In the same vein, there were several



MIP: Theory and Practice { Closing the Gap 9

instances, such as the PDS models, where a whole family of models with
increasing sizes were found. In these cases, the largest instance from the
family was included in the test-set and the others deleted.
All runs were done on PCs with 400 MHz Pentium II processors run-

ning a Linux operating system. Models were included in the �nal per-
formance numbers only if, in presolved form, they were solvable within
one-half Gigabyte of physical memory. This limitation was dictated by
memory availability on our test machines. A time limit of 500,000 sec-
onds (about 6 days) was also imposed for each run. A limit this large
may seem excessive, but it was deemed necessary for the tests since the
expectation was that several models would solve in several thousands
of seconds with CPLEX 6.5 and would be a large multiple slower with
CPLEX 5.0. Comparisons would not have been possible otherwise. Note
that in the �nal analysis of the data, where ratios are used to compare
the various algorithms, models that exceeded the memory limit were
not included. However, those that reached the time limit were included,
in such cases using 500,000 seconds as the run time. As a result the
comparisons we made underestimated the actual improvements.
Table 1 in the appendix gives size statistics for the models generated,

ordered by the number of constraints in the model. Generic names (LP01
through LP90, ordered by increasing numbers of constraints) have been
used since many of these models are proprietary. The mean number of
constraints was about 50,000, with three models having over 1,000,000
constraints. The following two tables summarize comparative perfor-
mance as problem size grows. There are distinct tables for barrier and
simplex (plus best) since the sets of models not meeting the memory
restriction were di�erent.

Performance Improvements: Large LPs
CPLEX 5.0 to 6.5

Mean Ratios

Problems Primal Simplex Dual Simplex Best

Biggest 10 8.5 22.3 18.0
Biggest 20 7.9 18.8 12.2
Biggest 30 7.4 20.2 11.3
Biggest 40 6.4 14.0 8.0
Biggest 50 5.5 11.9 6.7
Biggest 60 5.2 10.1 6.2
Biggest 70 5.1 9.1 5.6
Biggest 80 4.5 8.2 5.2
All 4.4 8.0 5.2
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Performance Improvements: Large LPs { Barrier
CPLEX 5.0 to 6.5

Problem Mean Ratios

Biggest 10 11.9
Biggest 20 5.5
Biggest 30 4.1
Biggest 40 3.7
Biggest 50 3.6
Biggest 60 3.7
Biggest 70 3.6
All 3.6

The �rst table above refers to simplex results and the best of primal
and dual simplex and barrier, where barrier includes crossover to a basic
solution. The total number of models in the All category for simplex
was 86; four models failed the memory-limit test. 75 models are in the
All category for barrier; �fteen failed the memory-limit test.
For each model passing the memory test and for each algorithm, two

runtimes were produced, one for CPLEX 5.0 and one for CPLEX 6.5.
Given these sets of numbers, ratios were computed of the 5.0 time divided
by the corresponding 6.5 time. Thus, a ratio bigger than 1.0 meant that
6.5 was faster.
To understand how the summary numbers in the tables were con-

structed, consider the row labeled Biggest 30 in the �rst table, for the
primal and dual simplex algorithms and \best." To get the numbers
in this row, we computed the geometric means of the time ratios for
models LP58 to LP90 (excluding LP85, LP89, and LP90, which failed
the memory test) doing so for each of the three algorithms. The results
for the primal simplex algorithm indicate a speedup of 7.4 on average,
for CPLEX 6.5 versus CPLEX 5.0; for the dual the speedup was 20.2 on
average; and for the best of primal, dual, and barrier, the speedup was
11.3.
In summary, the overall improvements are very large indeed. The

magnitude of these improvements was unexpected.
One thing the �rst of the above tables does indicate quite clearly is

that the dual simplex algorithm experienced a larger improvement than
the other algorithms. This observation leads to the question of how the
various algorithms compare to each other. Which is best? Here is a
summary:
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CPLEX 6.5: Algorithm Comparison

Algorithms Instances Mean Wins for Dual

Primal/Dual 86 2.6 56
Barrier/Dual 78 1.2 41

Thus, dividing the primal solve time for each model by the dual solve
time and computing the geometric means of the resulting ratios gives
the result that the dual was a factor of 2.6 faster overall. 86 models
were included in the test. In 56 of the instances dual was the winner.
In 30 instances primal won. For the barrier versus dual comparison, it
was much closer, with dual winning by only a small margin, but winning
nevertheless, with a mean ratio of 1.2. Dual was the faster algorithm in
41 instances, while barrier won in 37 instances.
Missing from the table, because of the focus on the dual, is the com-

parison between barrier and primal. In that comparison barrier won 46
times and primal 32 times, and the mean ratio was 1.8, with barrier
the winner. Finally, doing a comparison among all algorithms, using all
90 models (see Remark 3, below), we obtain the interesting result that
primal won 18 times, dual 33 times, and barrier 39 times.

Remarks:

1 Among the 86 instances in which CPLEX 6.5 primal and dual were
compared, primal and dual reached the 500,000 second time limit
on one common model. This model contributed a 1.0 to the mean
ratio. There were six additional instances in which the primal
reached the time limit, and no additional instances for the dual.

2 There were four models too large to be solved with any of the
algorithms within the one-half Gigabyte limit: LP13 (because of
the density of the LU and Cholesky factors), LP85, LP89, and
LP90. In all four cases, limited tests were run on machines with
more available physical memory. In each of these cases, barrier
was clearly the superior algorithm. One of the models, LP89, has
yet to be solved with a simplex algorithm.

In addition to the four models just listed, there were eight models|
LP26, LP63, LP71, LP78, LP79, LP80, LP81, and LP86|that
could not be run with CPLEX 6.5 barrier within the one-half Gi-
gabyte memory limit, but could be run with both primal and dual.
Partial barrier tests were run with these models on larger-memory
machines. In each case the simplex method dominated the perfor-
mance of the barrier algorithm. In six of the cases, dual was the
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superior algorithm, in one primal, and in one case primal and dual
produced similar performance.

3 All of the numbers presented here can be viewed as biased against
the barrier algorithm in the following two senses. First, the oating-
point performance on the machines we used, X86 PC's, is markedly
inferior to that on most UNIX workstations. Floating-point perfor-
mance is key to the performance of the barrier algorithm. If these
tests had been run on machines with better oating-point per-
formance, barrier likely would have \won" the comparison with
dual. Second, the barrier algorithm can be run in parallel on
shared-memory machines, and produces good speedups over a wide
range of model characteristics. No such parallelism appears to be
available for the simplex algorithms. If this di�erence in parallel
performance had been exploited, even to the extent of using two
processors, again barrier would have won.

What can one say in general about the best way to solve large models?
Which algorithm is best? If this question had been asked in 1998, our
response would have been that barrier was clearly best for large models.
If that question were asked now, our response would be that there is no
clear, best algorithm. Each of primal, dual, and barrier is superior in a
signi�cant number of important instances.

3. MIXED-INTEGER PROGRAMMING

This is a discussion focused on features. We will consider the following
topics:

Heuristics

Node Presolve

Cutting Planes

As mentioned earlier, a guiding principle of our MIP developments was
to apply a \barrage" of di�erent techniques to each model. By applying
every technique to every model, we bene�t if any of the techniques are ef-
fective, and we free the users from having to determine which techniques
are appropriate for their speci�c models. An unanticipated bene�t from
this approach was that the techniques often combine to produce results
that would not have been possible with any one technique. The obvious
downside is that we pay the cost of every technique, even when the tech-
nique is not e�ective for that model. Much of the work of implementing
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the techniques we will now discuss went into creating aggressive strate-
gies for determining that a technique is not helping and turning it o�
automatically.
The standard technique for solving mixed-integer programming prob-

lems is a version of divide-and-conquer known as linear-programming
based branch-and-bound, or, what is now a more correct name, branch-
and-cut. This algorithm begins by solving the linear-programming re-
laxation, obtained by simply deleting the integrality restrictions. If the
solution x� of this LP satis�es all the integrality restrictions, we are
done; otherwise, some integrality restriction is violated. Picking an in-
tegral variable xj that is currently fractional with value x�j , we branch,
creating two separate \child" problems from the single \parent" prob-
lem, one of which has the added restriction xj � bx�jc and the other
of which has the added restriction xj � dx�je. At any point, if a cut-
ting plane is identi�ed that cuts o� the solution to the current LP, that
constraint is added to the LP. The procedure is repeated.
Two important quantities that are generated during the branching

process are an objective function upper bound and an objective function
lower bound. Upper bounds are obtained by �nding feasible integral
solutions. Lower bounds are obtained by taking the smallest optimal
objective value for a linear-programming relaxation among all current
active branch-and-cut nodes. In terms of these two bounds, we can
think of node presolve and heuristics as contributing to the upper bound,
and both node presolve and cutting planes as contributing to the lower
bound.

3.1. NODE PRESOLVE

It is now standard to apply problem simpli�cation routines to linear
programming problems prior to solving. For integer programming, such
\root" reductions seem to be even more important. We begin by ap-
plying a restricted form of the reductions for linear programming, those
that are valid for integer programs. We then apply several additional
reductions, the main two being \bound strengthening" and \coe�cient
reduction." See Ho�man and Padberg (1991) and Savelsbergh (1994)
for discussions of mixed-integer \root" presolve.
The above is a description of what we do before the branching process

is started. What do we do within the tree? In the integer-programming
literature there are several proposals that perform rather extensive sets
of presolve operations at the nodes. However, our presolve needs to work
for general-purpose models, and has to have the property that it is not
too expensive in the event that it does not produce positive results for a
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particular model. We have thus selected a very restricted kind of node
presolve, one that does not make any changes that a�ect the constraint
matrix: We implemented a fast, incremental form of bound strengthen-
ing. The following is an illustration of how bound-strengthening works.

Example: Resource allocation.
The problem is to decide how to split up a minute of available time
among various possible jobs. Here is a constraint:

40x1 + 30x2 + 60x3 + 60x4 + 30x5 + 20x6 + 60x7 + 40x8 = 60

On the right-hand side, 60 is the total number of seconds of time avail-
able. There are eight possible choices for individual jobs. The variables,
each of which must take on the value 0 or 1, determine which of the jobs
are selected. Imagine that this constraint is part of a larger formulation.
Down in the branch-and-cut tree, it might happen that the variable x2
is �xed to 1 at some node (e.g., due to previous branching on that vari-
able). The right-hand side of the above constraint may then be updated,
reducing it by 30 units. If we then compute upper bounds on each of the
remaining variables and round, we deduce x1 = x3 = x4 = x7 = x8 = 0.
These �xings are the result of one pass of bound strengthening. A sec-
ond pass allows us to conclude x5 = 1, and a third pass x6 = 0.

As noted earlier, node presolve attacks both the lower and upper
bounds simultaneously. By deriving tighter bounds on integer variables,
it often increases the objective value of the associated relaxation and
thus improves the lower bound. By excluding fractional values, it also
increases the likelihood that the solution of the linear-programming re-
laxation at a node is integer feasible, thus potentially improving the
upper bound. As discussed in the next section, node presolve is also
used as part of the node heuristics.
Returning to the general case, it was important �rst to make the code

incremental so that it could bene�t, during branch-and-cut, when the
processing of a node was followed immediately by the processing of one
of its children. Also important were good choices for defaults. The
choices we made were the following:

The number of repeated applications was limited; instances exist
where, unrestricted, long sequences of reductions can occur.

Apply only to non-(0,�1) matrices; otherwise, no rounding occurs.
If there is no rounding, all bounds that are deduced are implied
by the LP. We are interested in mixed-integer reductions.
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Node presolve is applied for the �rst 100 nodes processed, then op-
tionally discontinued depending upon its e�ectiveness during those
initial 100 nodes. Every 100 nodes thereafter, node presolve is ap-
plied again, and optionally reactivated.

3.2. NODE HEURISTICS

The idea of a node heuristic is simple. Instead of waiting for branch-
ing to force integrality, we consider isolating the MIP at a particular
node and applying local operations within that node to determine an
integral solution. Typically these operations make use of the x vector
generated as the solution of the linear-programming relaxation at that
node and then perform some sort of \dive," �xing an increasingly large
number of variables until either a new, best integral solution is found, a
new incumbent , or the �xings that are made result in infeasibility or an
objective value worse than the current incumbent.
What are the reasons heuristics may help? First, having a good inte-

gral solution as early as possible helps the overall branch-and-cut pro-
cedure. It helps in reducing the number of nodes that are processed,
and it speeds the processing of individual nodes by providing a tight
objective-cuto� for the dual simplex algorithm (the method of choice
for reoptimizing at the nodes). Second, in many real-world problems,
high quality integral solutions are of much more importance than proofs
of optimality.
We used the following ingredients in our implementations:

List �xing with di�erent orders: All our heuristics involve diving,
employing a sequence of �xings. These �xings can, for example,
be done with basic variables �rst or non-basics �rst, or in some
combination. Each alternative gives a di�erent sequence.

Periodic linear solves: We optionally solve LPs during the dive.
These solves are expensive, relative to other steps, and so we limit
the number of solves to �ve.

Reduced-cost �xing: When an LP is solved, new reduced-cost in-
formation is generated, and that can be used to determine new
reduced-cost �xings.

Quick and dirty node presolve: Here we leverage the existence of
the node presolve by using a restricted version to deduce implied
�xings from the preceding �xings.
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With these ingredients, �ve di�erent heuristics were implements. Each
of the �ve is applied at the root by default. The \most successful" is
applied periodically at subsequent nodes.

3.3. CUTTING PLANES

This is the area in which the bulk of the theoretical work has been
done. CPLEX 6.5 includes the implementation of six di�erent kinds of
cutting plane routines, each with its own defaults determining when and
how often it is applied.
The kinds of cuts that are applied are listed below together with a

limited set of references.

Knapsack Covers: Crowder, Johnson, and Padberg (1983); Weis-
mantel (1997).

GUB Covers: Gu, Nemhauser, and Savelsbergh (1998).

Flow Covers: Padberg, Van Roy, and Wolsey (1985); Gu, Nem-
hauser, and Savelsbergh (1999).

Cliques: Johnson and Padberg (1983); Atamturk, Nemhauser,
and Savelsbergh (1998).

Implied Bounds: Ho�man and Padberg (1991)

Gomory Mixed-Integer Cuts: Gomory (1960).

Knapsack covers were the �rst cuts to �nd extensive use in general
purpose solvers, and have been successfully used in commercial codes for
several years. GUB Covers are a mild extension of knapsack covers that
exploit the existence of GUB constraints (

P
j xj � 1) intersecting a given

knapsack constraint. Flow covers can be viewed as closely related to
knapsacks. This class of constraints appears to be very special-purpose,
but is really quite general. The separation step, that of actually �nding
a ow cover violated by a given x vector, uses the same approach as
for knapsack covers. The lifting step, which attempts to strengthen the
initially found cut by increasing the dimension of its intersection with
the underlying convex hull of integral feasible solutions, is particularly
important for this class, but also quite complex. Cliques are touched
upon briey in Example 2. Implied bound cuts are discussed below.
Gomory cuts are the classic mixed-integer cuts introduced by Gomory
in 1960, and recently reinvestigated by Balas, et al. (1996). As we shall
see, the power of these cuts, long neglected, is signi�cant.
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Knapsack Extensions. Knapsack covers have been recognized
in CPLEX since version 3.0. The lifting was improved signi�cantly in
version 5.0 using ideas suggested by Martin and Weismantel (1995). In
version 6.5 the applicability of the existing routines was extended in the
following ways:

Equality constraints: Equality constraints that would be can-
didates for knapsack separation, if they were inequalities, are re-
placed by pairs of opposing inequalities.

Continuous variables: Where possible, continuous variables are
replaced by appropriate bounds, depending upon the sign of the
corresponding constraint coe�cient and the sense of the constraint.

Surrogate knapsacks: Given a collection of constraints of the
form

nX
j=1

xj � b; xj � ajyj (j = 1; : : : ; n); yj 2 f0; 1g (j = 1; : : : ; n):

We replace each xj by the expression ajyj.

Implied Bounds. It is standard wisdom in integer programming
that one should disaggregate variable upper bound constraints on sums
of variables. These are constraints of the form:

x1 + : : : + xn � (u1 + : : :+ un)y; y 2 f0; 1g:

where uj is a valid upper bound on xj � 0 (j = 1; : : : ; n). This sin-
gle constraint is equivalent, given the integrality of y, to the following
collection of \disaggregated" constraints:

xj � ujy (j = 1; : : : ; n)

The reason the second, disaggregated formulation is preferred is that,
while equivalent given integrality, its linear-programming relaxation is
stronger. However, given the ability to automatically disaggregate the
�rst constraint, these \implied bound" constraints can be stored in a
pool and added to the LP only as needed. Where n is large this latter
approach will typically produce a much smaller, but equally e�ective LP.

Gomory Mixed-Integer Cuts. Gomory mixed-integer cuts were
among the �rst introduced but for years have had the unfortunate repu-
tation that they were not e�ective in practice. That reputation seems to
be based upon two phenomena. First, Gomory cuts are often \dense,"
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adding a signi�cant number of nonzeros to the constraint matrix. The
linear-programming solvers of the day just couldn't handle the resulting
increased density. Second, in the early tests, cuts were applied in a way
that today seems obviously bad, but was quite natural at the time. Go-
mory's algorithm, not simply the cuts he introduced, was being viewed
as a potential complete solution to integer programming, just as the sim-
plex method was a \complete" solution for linear programming. Thus,
instead of adding groups of cuts, where a group consists of as many
\good" violated cuts as could be found, cuts were added one at a time,
and branching was ignored. The result was that convergence was either
very slow, or simply did not occur.
Times have changed. Linear-programming solvers are better and we

know cuts should be added in groups; moreover, we don't expect cuts to
solve the entire problem. We now realize how strong an ally intelligent
branching can be. With these thoughts in mind, Gomory cuts become a
very natural choice. They are the most general cuts that we have (one
can always �nd a violated Gomory mixed-integer cut), they are easy
cuts to implement, and they have the interesting, well-known property
that they combine two important ideas: Rounding and disjunction. In
e�ect, through disjunction they capture some of the e�ect of branching
without increasing the number of active nodes.
There is a nice geometry corresponding to Gomory mixed-integer cuts,

as well as a simple, straightforward algebraic derivation. Given the im-
portance of these cuts, we sketch both.
First, the geometry. Consider a simple mixed inequality x+ y � 3:5,

where x � 0 and y is integral (not necessarily nonnegative). The feasible
region for the linear-programming relaxation has exactly one fractional
extreme point, (0; 3:5). Removing this point is easy. We round, y �
b3:5c and y � d3:5e, and intersect the feasible region with the resulting
pair of inequalities. The result is a pair of disjoint polyhedra, in e�ect,
a disjunction. This disjunction can be removed by taking the convex
hull of the two polyhedra. Equivalently, we can add the cutting plane
2x + y � 4 to the original de�ning inequality. This cut is exactly the
associated Gomory mixed-integer cut, perhaps more properly viewed as
a mixed-integer rounding cut in this case. See Wolsey (1998) for a further
discussion of these issues.
Note that it is sometimes observed that Gomory cuts are weak relative

to some of the combinatorially-derived cuts, those that can be shown to
be facet de�ning. However, at least in this case, the Gomory cut is as
strong as it can be. It de�nes the integer hull.
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Now for the algebra. Let y; xj 2 Z+, and consider the equation

y +
X
j

aijxj = d = bdc+ f; f > 0:

Think of this equation as a row of an optimal simplex tableau. Now
rounding, and introducing the notation aij = baijc+ fj, we may de�ne

t = y +
X

(baijcxj : fj � f) +
X

(daijexj : fj > f) 2 Z+:

Subtracting yields
X

(fjxj : fj � f) +
X

((fj � 1)xj : fj > f) = d� t:

Now applying a disjunction, e�ectively branching on t, we have

t � bdc =)
P
(fjxj : fj � f) � f; and

t � dde =)
P
((1� fj)xj : fj > f) � 1� f

Dividing by the right-hand side in each case, we obtain a quantity that
is always nonnegative and, for the corresponding regions of t values, is
at least 1. Hence, the sum is at least 1:

X�
fj

f
xj : fj � f

�
+
X�

1� fj

1� f
xj : fj > f

�
� 1

This inequality is a Gomory mixed-integer cut. For simplicity, we have
described it for a pure integer constraint, but adding continuous variables
is easy and really contributes nothing to understanding these inequali-
ties.
We remark that, for a variety of reasons, it has become standard

in courses on integer programming to present Chv�atal-Gomory integer
rounding cuts. These cuts are closely related to the above, but are
simpler to describe. They also have very nice, easily described theoretical
properties. On the other hand, even for pure integer problems, it is the
mixed-integer cuts that are computationally most useful. And, as we
are about to see, the mixed-integer cuts really do work.

3.4. COMPUTATIONAL RESULTS

We present results for two test-sets of models. The �rst is MIPLIB
3.0, see Bixby, et al. (1998). This is a public-domain collection of
problems that is used by many as the standard test-set for evaluating
mixed-integer programming codes. To obtain the models and a complete
set of statistics, see
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http://www.caam.rice.edu/�bixby/miplib/miplib.html

We ran the following test, comparing CPLEX 6.0, which contains
none of the enhancements described in this section, and CPLEX 6.5.
The tests were run on a 500 MHz DEC Alpha 21264 computer with 1
Gigabyte of physical memory. Runs were made with a time limit of 7200
seconds.
The MIPLIB test-set includes 59 models. Of these 59, 22 were solved6

with both codes in less than ten seconds using default settings. Of the
remaining 37, ten hit the time limit with version 6.0 but were solved
with version 6.5. The geometric mean of the CPLEX 6.5 solution times
for these ten models was 48.5 seconds. Removing these ten leaves 27
models. Eight of these 27 models were solved by neither code. In these
eight cases, we compared the gap between the incumbent and the best
bound at termination. Version 6.0 produced a gap that was better in
one case, by about 0.1%. Taking the ratios of the percentage gaps in all
eight cases, dividing the 6.0 gap by the 6.5 gap, and taking the geomet-
ric mean yielded 3.3. Thus, the mean gap for version 6.5 was 3.3 times
better. Removing the eight models that were solved by neither code left
19 models. These are the ones that were (a) reasonably hard, and (b)
solvable by both codes. The geometric mean of the solution-time ratios
in this case was 11.2. That is, CPLEX 6.5 was over 11 times faster on
average on these models. These results are summarized in the following
table:

MIPLIB 3.0 - Defaults
CPLEX 6.0 versus CPLEX 6.5

7200 second time limit

� 22 models solved by both codes in less than 10 seconds
� 10 models solved by CPLEX 6.5 and not CPLEX 6.0
� 8 models solved by neither: CPLEX 6.5 3.3 times better gap
� 19 models solved by both: CPLEX 6.5 11.2 times faster

There is a second test-set of largely proprietary models that we prefer
to MIPLIB 3.0 in evaluating performance. This test-set was assembled
about two years ago, from the CPLEX model library, in the following
way. On some machine (what was then the fastest machine available to
us), and using the then current version of CPLEX, we ran each model
using defaults. Any model that solved to optimality in less than 100

6The default CPLEX optimality tolerance for MIPs is a gap of 0.01%
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seconds was excluded from further testing. We then made an extensive
set of runs on the remaining models, some runs extending to several
days, trying a variety of parameter settings. All the models that could
be solved in this way were included in the test-set, with the exception
of a few models (less than �ve) that were solvable, but took over about
one-half day to solve. With these exceptions, one might characterize the
resulting test-set as the models that appeared to be di�cult but solvable,
assuming tuning was allowed. Statistics for the 80 models in the test-set
are given in Table 2 in the appendix (\GIs" stands for general integer
variables). For the present paper, we made several kinds of runs. All
used a 500 MHz DEC Alpha 21264 system and were run with a time
limit of 7200 seconds.
First, we ran CPLEX 6.5 and CPLEX 6.0 with defaults. The result

was that 6.5 did not solve three of the models to within default tolerances
within the allotted two hours (MIP09, which is the MIPLIB 3.0 model
arki001, MIP40, and MIP50). CPLEX 6.0 did not solve 31 models. The
three models not solved by 6.5 were among these 31. Excluding these
three, there was one model where the solution times were identical (and
small). Version 6.5 was faster in 66 of the remaining cases, and 6.0 was
faster in ten cases. Dividing the 6.0 time by the 6.5 time and taking the
geometric mean7 gave a mean speedup of 22.3.
We next compared CPLEX 6.5 running defaults with tuned CPLEX

6.0 times, using the best parameter settings that are known to us. Ver-
sion 6.5 was faster in 56 cases, and 6.0 in 22 cases. The mean speedup for
version 6.5 using default settings compared with 6.0 using tuned settings
was 3.8.
Finally, we performed two kinds of tests to evaluate the e�ects of some

of the mixed-integer programming features that have been discussed in
this paper. In the �rst test we started with defaults, turned o� indi-
vidual features one at a time, and measured, using geometric means of
ratios of solve times, the e�ects of these changes. Our second set of tests
was performed, e�ectively, in the opposite direction. We turned o� all
six kinds of cutting planes, made a set of test runs, and then turned on
the individual cuts one at at time, making comparisons using ratios and
geometric means. The results are given below:

7MIP45 was excluded from these ratios. It terminated prematurely with CPLEX 6.0 because
of excessive basis singularities in the simplex method while solving some node LP.
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Performance Impact: Relative to Defaults

Cuts Other
Implied bounds 0% Node presolve 9%
Cliques 0% Node heuristics 9%
GUB covers 0%
Flow covers 12%
Covers 16%
Gomory cuts 35%

Performance Impact: Individual Cuts

Implied bounds -1%
Cliques 0%
GUB covers 10%
Flow covers 18%
Covers 58%
Gomory cuts 97%

The big winner here, and perhaps the biggest surprise, was Gomory cuts.
They were clearly the most e�ective cuts in our tests.

4. EXAMPLES

We close with some examples. In the previous sections we have at-
tempted to demonstrate that great progress has been made in building
general-purpose mixed-integer solvers, solvers that run well with default
settings. This development is critical to the wider use of mixed-integer
programming in practice. Most users of mixed-integer programming are
not interested in the details of how the codes work. They simply want
to be able to run a code and get results. Nevertheless, there still are,
and probably always will be, many examples of interesting, important
MIPs that are solvable, but not without taking advantage of problem
structure in some special way.

Example 1 The �rst example is from a customer who was primarily
interested in �nding feasible solutions. His criteria was, stop after �nding
a feasible integral solution with gap less than 1%. CPLEX 6.0 was
incapable of meeting this criteria. Indeed, this model was left running
for a period of several days on a fast workstation, a 600 MHz Alpha
21164 computer, and not a single feasible solution was found. Below is
a CPLEX 6.5 run for this model using a 500 MHz DEC Alpha 21264
computer:
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Problem 'unnamed.mps.gz' read.

New value for passes for generating fractional cuts: 0

New value for mixed integer optimality gap tolerance: 0.01

Reduced MIP has 7787 rows, 7260 columns, and 22154 nonzeros.

Clique table members: 533

Root relaxation solution time = 0.37 sec.

Nodes Cuts/

Node Left Objective IInf Best Integer Best Node ItCnt Gap

0 0 -2.8298e+07 224 -2.8298e+07 3095

-2.7769e+07 160 Cuts: 616 4173

-2.7720e+07 156 Cuts: 118 4548

-2.7703e+07 176 Cuts: 54 4790

-2.7689e+07 177 Cuts: 36 4916

-2.7685e+07 180 Cuts: 29 4999

-2.7685e+07 181 Flowcuts: 6 5035

100 100 -2.7590e+07 58 -2.7684e+07 6174

200 200 -2.7446e+07 12 -2.7684e+07 6673

* 239 236 -2.7434e+07 0 -2.7434e+07 -2.7684e+07 6843 0.91%

GUB cover cuts applied: 6

Cover cuts applied: 44

Implied bound cuts applied: 66

Flow cuts applied: 295

Fractional cuts applied: 212

Integer optimal solution (0.01/1e-06): Objective = -2.7433577522e+07

Current MIP best bound = -2.7684321743e+07 (gap = 250744, 0.91%)

Solution time = 31.90 sec. Iterations = 6843 Nodes = 240 (235)

So, this is an example of a model that now solves well with default
settings. One interesting aspect of the solution is that it is a case in
which several features combined to produce the result. Clearly cuts
were involved, and, although it is not clear from the output, the node
presolve was also important. Each of several, separate features helps,
but it's the combination that leads to a solution.

Example 2 Our second example illustrates how defaults are some-
times not enough. In CPLEX 6.5, several degrees of probing on binary
variables are available. These options are not turned on by default. As
is well known, even with an e�cient implementation of probing, compu-
tation times can experience a combinatorial explosion.
Probing occurs in three phases in CPLEX 6.5 when activated at its

\highest level." In the �rst phase, it is applied to individual binary
variables, as suggested in Brearley, et al. (1975). Thus, each binary
variable is �xed in turn to 0 and then to 1, applying bound strength-
ening after each such �xing. For an individual variable, the result can
include the �xing of the variable being probed (when one of the tested
values forces the infeasibility of the whole model), implied bounds on
continuous variables|hence, implied bound cuts become stronger when
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probing is activated|and 2-cliques. The 2-cliques that result from this
�rst phase are collected and merged together with the cliques given by
GUB constraints, those that are explicit in the original formulation. The
result is an initial clique table. This table is then further expanded in
a second phase by applying lifting directly to the cuts in this table. See
Suhl and Szymanski (1994). This idea was suggested to us by Johnson
(1999).
Finally, since, in general, there can be an exponential number of max-

imal cliques, it is not possible to explicitly store all such cliques. Within
the branch-and-cut tree we use the clique table and the current solution
to the linear-programming relaxation, as suggested by Atamturk, et al.,
(1998), to generate further clique cuts.
When we �rst tried to solve the present example model, it appeared

not to be possible with CPLEX 6.0. The optimal objective value of the
root linear-programming relaxation was 1.0, and the best-bound value
never moved above 2.0, even though several parameter settings were
tried and several long runs were made.
In the CPLEX 6.5 run displayed below, probing was set to its highest

level. The result was that a large number of clique inequalities were
generated at the root. These were crucial, pushing the lower bound at
the root to 20.8. At the same time, one of the �ve heuristics that are
applied at the root succeeded in �nding a feasible solution of value 21.
Since, as the output indicates, the objective function in the model could
be proven to take on only integral values, it followed that 21 was optimal,
and the run terminated without branching.

Problem 'unnamed.lp.gz' read.

New value for probing strategy: 2

Elapsed time 10.22 sec. for 47% of probing

Elapsed time 20.30 sec. for 94% of probing

Probing time = 21.53 sec.

Clique table members: 1068

Root relaxation solution time = 142.18 sec.

Objective is integral.

Nodes Cuts/

Node Left Objective IInf Best Integer Best Node ItCnt Gap

0 0 1.0000 4766 1.0000 20704

20.8000 439 Cliques: 500 36839

20.8000 203 Cliques: 17 40402

Heuristic: feasible at 22.0000, still looking

Heuristic complete

* 0+ 0 21.0000 0 21.0000 20.8000 40402 0.95%

Clique cuts applied: 349

Integer optimal solution: Objective = 2.1000000000e+01

Solution time = 792.62 sec. Iterations = 40402 Nodes = 0
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Example 3 The noswot model is one of the smaller, but more di�cult
models in the MIPLIB 3.0 test-set. It has only 128 variables, 75 of which
are binary, and 25 of which are general integers.
This model is very di�cult to solve with the currently available branch-

and-cut codes. With CPLEX 6.0 it appeared to be unsolvable, even after
days of computation. It is now solvable with CPLEX 6.5, running de-
faults, but the solution time of 22445 seconds (500 MHz DEC Alpha
21264), and the enumerated 26,521,191 branch-and-cut nodes, are not a
pleasant sight.
In contrast, this model does suddenly become easy if the following

eight constraints are added:

c184: X21 - X22 >= 0

c185: X22 - X23 >= 0

c186: X23 - X24 >= 0

c187: 2.08 X11 + 2.98 X21 + 3.47 X31 + 2.24 X41

+ 2.08 X51 + 0.25 W11 + 0.25 W21 + 0.25 W31 + 0.25 W41 + 0.25 W51

<= 20.25

c188: 2.08 X12 + 2.98 X22 + 3.47 X32 + 2.24 X42

+ 2.08 X52 + 0.25 W12 + 0.25 W22 + 0.25 W32 + 0.25 W42 + 0.25 W52

<= 20.25

c189: 2.08 X13 + 2.98 X23 + 3.4722 X33 + 2.24 X43

+ 2.08 X53 + 0.25 W13 + 0.25 W23 + 0.25 W33 + 0.25 W43 + 0.25 W53

<= 20.25

c190: 2.08 X14 + 2.98 X24 + 3.47 X34 + 2.24 X44

+ 2.08 X54 + 0.25 W14 + 0.25 W24 + 0.25 W34 + 0.25 W44 + 0.25 W54

<= 20.25

c191: 2.08 X15 + 2.98 X25 + 3.47 X35 + 2.24 X45

+ 2.08 X55 + 0.25 W15 + 0.25 W25 + 0.25 W35 + 0.25 W45 + 0.25 W55

<= 16.25

Where do these constraints come from? Some time ago, one of the
authors of this paper discovered what looked like a high degree of sym-
metry among some of the variables in the model: X21, X22, X23, and
X24. He tried the following idea. There are 24 di�erent ways of forming
triples of constraints from these variables, in the way indicated above by
constraint c184{c186, with each of these triples removing the symmetry
on the variables. Being uncertain that his symmetry observation was
really valid for the entire model, he then simply solved the 24 individual
instances, and, in so doing, the entire model.
As some explanation for why this approach, creating 24 related in-

stances, could be e�ective, consider taking several disjoint copies of the
same model and putting them side by side in a single model. Doing so is
not a good idea; the models, even if they are slightly di�erent, should be
solved individually. However, at least for pure LPs, something reason-
able will happen, and the total solution time will grow in some way that
is not too-highly nonlinear in the number of disjoint copies that have
been combined. Indeed, in the case of a barrier algorithm, the total
computation time can be expected to grow something close to linearly
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in the number of copies. However, doing this kind of replication with
an integer program is an entirely di�erent matter. There the number
of nodes in the search, and hence the solution time, can be expected to
grow like the product of the number of nodes in the individual search
trees.
Returning to the noswot instance, the above result prompted one

of our co-workers, Irv Lustig (1999), to \reverse engineer" the origi-
nal model, and give a representation using the OPL modeling language
(see Van Hentenryck (1999)). Another co-worker, Jean-Francois Puget
(1999), then studied this representation and noticed that it could be
given an interpretation as a resource allocation model on �ve machines,
with scheduling, horizon constraints, and transition times. It was then
clear that four of the �ve \machines" were indeed identical, and hence
that constraints c184-c186 were valid. In other words, it was necessary
to solve only one of the 24 instances mentioned above. In addition, it
was also observed that the transition-time constraints could be strength-
ened by adding �ve additional cuts that exploited the fact that there was
actually a minimum positive transition cost of 0.25. Essentially the ar-
gument was that if a machine performs k di�erent jobs, then it must
pay at least 0:25(k�1) in transition cost. These last constraints are also
due to Puget.
With these added constraints, the model becomes solvable. Here are

the results using CPLEX 6.0 and 6.5 on a 400 MHz Pentium II Laptop
running a Linux operating system:

CPLEX 6.0: 142 seconds 169090 nodes
CPLEX 6.5: 16 seconds 9807 nodes

So, this is a case where good modeling makes the biggest di�erence, but
having a stronger code is also valuable.

5. SUMMARY

In this paper we have discussed recent advances in linear and mixed-
integer programming. The linear-programming improvements were most
striking for larger models, but are e�ective for small and medium-sized
models as well. One important consequence of this work is that for
large models barrier algorithms are no longer dominant; each of primal
and dual simplex, and barrier is now the winning choice in a signi�cant
number of cases.
For mixed-integer programming, the improvements were dramatic.

These resulted from mining an extensive backlog of theoretical ideas
from the scienti�c literatures for integer programming and combinatorial
optimization. Particular attention was given to developing good default
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implementations of these ideas so that they could be applied in concert,
each helping on the problems to which they applied, while causing a
minimal degradation in performance when they didn't apply.
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Appendix: Problem Size Statistics

Table 1 Large LP Statistics

Model Rows Columns Nonzeros

LP01 10295 50040 150110
LP02 13005 77133 361567
LP03 14738 33025 151383
LP04 15014 37372 103866
LP05 15051 34553 132295
LP06 15349 35215 162709
LP07 15455 59942 225514
LP08 15540 23752 86753
LP09 16223 28568 88340
LP10 16768 39474 203112
LP11 17681 165188 690273
LP12 18262 23211 136324
LP13 18750 84375 9993717
LP14 19103 33490 276895
LP15 19374 180670 5392558
LP16 19519 45832 124280
LP17 19844 55528 152952
LP18 19999 85191 170369
LP19 21019 115761 728432
LP20 22513 99785 337746
LP21 22797 63995 172018
LP22 23610 44063 154822
LP23 23700 23005 169045
LP24 23712 31680 81245
LP25 24377 46592 2139096
LP26 26618 38904 1067713
LP27 27349 97710 288421
LP28 27441 15128 96118
LP29 27899 26243 261968
LP30 28240 55200 161640
LP31 28420 164024 505253
LP32 29002 111722 2632880
LP33 29017 20074 2001102
LP34 29147 9984 1013168
LP35 29724 98124 196524

Model Rows Columns Nonzeros

LP36 30190 57000 623730
LP37 30258 492266 1162517
LP38 31770 272372 829040
LP39 33440 56624 161831
LP40 34994 87510 208179
LP41 35519 43582 557466
LP42 35645 34675 208769
LP43 36400 92878 246006
LP44 38782 261079 1508199
LP45 39951 125000 381259
LP46 41340 64162 370839
LP47 41344 163569 1928534
LP48 41366 78750 2110518
LP49 43387 107164 189864
LP50 43687 164831 722066
LP51 44150 200077 4966017
LP52 44211 37199 321663
LP53 47423 81915 228565
LP54 48097 150138 1195800
LP55 48548 163200 617683
LP56 54447 326504 1807146
LP57 55020 117910 391081
LP58 55463 191233 840986
LP59 60384 100078 485414
LP60 63856 144693 717229
LP61 66185 157496 418321
LP62 67745 111891 305125
LP63 69418 612608 1722112
LP64 72258 226090 2242086
LP65 84840 316800 1899600
LP66 95011 197489 749771
LP67 99578 326504 2102273
LP68 105127 154699 358171
LP69 108393 112955 602948
LP70 118158 487427 974854
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Table 1 (continued) Large LP Statistics

Model Rows Columns Nonzeros

LP71 123964 93288 459680
LP72 125211 159109 457198
LP73 129181 467192 1025706
LP74 155265 377918 930166
LP75 175147 358239 1211488
LP76 179080 707556 1570514
LP77 185929 189867 2787708
LP78 186441 23732 397080
LP79 209760 363092 1061495
LP80 238969 772273 5795991

Model Rows Columns Nonzeros

LP81 269640 1205640 6481640
LP82 280756 920198 5936426
LP83 319256 638512 1231403
LP84 344297 559428 1909649
LP85 363458 146096 11470110
LP86 589250 1533590 5327318
LP87 716772 1169910 2511088
LP88 1000000 1685236 3370472
LP89 1204750 1229623 4693571
LP90 1709857 1903725 4959650

Table 2 Large MIP Statistics

Model Rows Columns Binaries GIs

MIP01 230 2025 1800 0
MIP02 759 17561 17561 0
MIP03 4089 121871 121870 1
MIP04 4116 41428 41427 1
MIP05 823 8904 8904 0
MIP06 426 7195 7195 0
MIP07 1095 11005 10940 65
MIP08 1838 807 807 0
MIP09 1048 1388 415 123
MIP10 2597 2288 1166 1122
MIP11 123 133 39 32
MIP12 105 117 34 30
MIP13 91 104 30 28
MIP14 8619 5428 1305 2
MIP15 37 526 526 0
MIP16 396 162 146 8
MIP17 631 783 28 0
MIP18 2176 6000 6000 0
MIP19 113 392 391 0
MIP20 236 1282 1277 0
MIP21 827 961 152 0
MIP22 2588 435 435 0
MIP23 15 154 0 153
MIP24 852 1337 19 0
MIP25 80 500 500 0
MIP26 4036 769 190 0
MIP27 41 49 0 30
MIP28 516 47311 47311 0
MIP29 582 55515 55515 0
MIP30 363 1298 1254 0
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Table 2 (continued) Large MIP Statistics

Model Rows Columns Binaries GIs

MIP31 2291 1992 174 12
MIP32 6256 8537 197 0
MIP33 1392 1224 240 168
MIP34 1392 1224 240 168
MIP35 1248 1224 384 336
MIP36 1368 1152 216 168
MIP37 1224 1152 336 336
MIP38 2407 1214 802 0
MIP39 3147 2505 388 1
MIP40 192 845 845 0
MIP41 1799 1008 0 1008
MIP42 43 51 0 39
MIP43 146 578 444 0
MIP44 2094 5592 443 3212
MIP45 684 1564 235 0
MIP46 68 151 150 0
MIP47 13 151 150 0
MIP48 12 151 150 0
MIP49 148 1280 1280 0
MIP50 788 645 140 0
MIP51 212 260 259 0
MIP52 2054 10724 10724 0
MIP53 908 129 31 0
MIP54 4480 10958 96 0
MIP55 291 422 98 0
MIP56 2280 1090 0 1090
MIP57 36 87482 87482 0
MIP58 176 548 548 0
MIP59 755 2756 2756 0
MIP60 45 86 55 0
MIP61 246 240 64 0
MIP62 1192 840 48 0
MIP63 2984 1451 1451 0
MIP64 291 556 300 15
MIP65 249 690 690 0
MIP66 314 5111 41 0
MIP67 20022 17665 17664 0
MIP68 23259 29342 13215 0
MIP69 524 1197 1100 96
MIP70 331 45 45 0
MIP71 146 578 444 0
MIP72 42 17419 17419 0
MIP73 3228 15541 15540 0
MIP74 1359 1959 0 1959
MIP75 234 378 168 0
MIP76 234 378 168 0
MIP77 4277 2417 1364 0
MIP78 845 3345 235 0
MIP79 10108 3836 1862 0
MIP80 27 26306 26306 0
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