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Abstract— Shared Protection is a technique that can
reduce the cost of backup resources in survivable networks.
To fully take advantage of the potential savings, the
Shared Protection has to be suitably taken into account at
design level, providing effective optimization models and
solution methods. We present an optimization model for
this problem together with two families of strengthening
valid inequalities.

Since the resulting problem is computationally burden-
some, we propose decomposition approaches based on
Lagrangian Relaxation. We compare our approach with
a commercial Mixed Integer Programming solver on a set
of real-world network instances, and report the difference
between the cost of a network considering the Shared
Protection or a traditional protection methods.

Index Terms— Network Planning, Survivability, Integer
Programming, Cutting planes.

I. INTRODUCTION

Optimization problems on Telecommunication net-
works have received much attention recently, due to the
crisis in this business field that increased the need for
efficiency.

One most desired features is survivability, i.e., the net-
work must be redundant to equipment failure. Among the
many techniques that allow network resiliency for several
failure scenarios, we focus on path protection: every pair
of nodes (s, t) communicates through a working path p
from s to t, and a backup path p′ that has no edge in
common with p; p′ is inactive in nominal conditions but
actually carries the data flow when an edge of p goes out
of order. Adopting this technique means assuming that
only one link at a time may fail in order for the single
backup path to be a sufficient replacement; the possibility
of re-establishing a link soon after failure makes this
single link failure hypothesis acceptable in most cases.

It is worth emphasizing that backup paths are only
used upon failure of one link, but they in any case
occupy part of the network capacity. In a Dedicated
Protection network, each backup path has exclusive
access to the assigned resources, while, as we will see
in section II, in Shared Protection (SP) the resources

are common to all backup paths provided they cannot
be used simultaneously in the event of a failure on two
intersecting working paths.

This problem falls in the class of multicommodity
network design which has received much attention over
the years. Several surveys are available in the literature,
e.g. the PhD dissertation by Yuan [18], with a bibliogra-
phy on many design and routing problems. Among the
numerous attempts to tackle survivable network design
are many algorithmic approaches; we cite the Analytic
Center Cutting Plane method proposed by Gendron et
al. [7], who compare the performance of several dual
methods such as subgradient and bundle. Cutting planes
have been applied to survivable network design in several
papers [3], [12]. Stoer and Dahl [17] introduce classes of
valid inequalities for a multi-facility problem, while for
the same problem Kennington et al. [9] propose some
valid inequalities and a decomposition approach.

The idea we express in this work is that Shared
Protection can be fully exploited when embedded in the
earliest steps of a design process. In Section III we
give an optimization model and discuss some related
computational issues. In Section IV we introduce a new
family of valid inequalities for the model and outline
a separation method based on max-flow algorithms.
In Section V we decompose the problem through La-
grangian Relaxation and outline a bundle method used
to solve the Lagrangian dual problem. Finally, we give
in Section VI some results justifying the adoption of this
technique as a main component of network optimization,
and attempt some conclusion in Section VII.

II. SHARING PROTECTION RESOURCES

We are given a topology G = (V,E) and a set Q
of traffic demands (we also use the term commodity)
described by triplets (sq, tq, dq), q ∈ Q, standing for
the origin, destination, and traffic volume requested.
Consider two traffic demands (s1, t1) and (s2, t2), as in
Fig. 1a. In the absence of failure, two paths p1 and p2 are
used for communication; note that they share no edge. If
a failure occurs on an edge in p1, network management
routines keep the connection active by using a backup
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path p′1, as highlighted in Fig. 1b. Similarly, if a failure
occurs on p2 a backup path p′2 replaces the nominal one
(see Fig. 1c).

As a first observation, we notice that every backup
path brings redundancy to the network but remarkably
increases its cost up to more than its double, since to
the capacity for working paths we must add a backup
capacity which has an almost equal cost but is only used
upon failure. Therefore, backup capacity has a high cost
with respect to its actual utilization.
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(a) Nominal condition
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(b) Failure on path p1
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(c) Failure on path p2
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(d) Shareable resources

Fig. 1. Shared backup resources in a network with path protection.

Consider again Fig. 1: if the two nominal paths p1

and p2 have no edge in common and under the single
failure hypothesis, utilization of the two backup paths p′1
and p′2 is mutually exclusive. Hence, these paths can be
assigned the same resources on all the edges they share,
thus allowing to at the most cut in half the capacity
installed to these two node pairs on p′1 ∩ p′2, which is
max(dq1 , dq2) rather than dq1 + dq2 (see Fig. 1d). For
instance, in Time, Frequency, and Wavelength Division
Multiplexing networks these two backup paths would
be assigned the same time slot, frequency band, and
wavelength or waveband, respectively.

This property may apply to more than two traf-
fic demands: in general, if a set of working paths
{p1, p2, ..., pm} for demands S = {q1, q2, ..., qm} ⊆ Q
are pairwise link disjoint and there is a non-empty
intersection of their backup paths P =

⋂m
i=1 p

′
i, the

resources on P may be shared among all of them.
This means that on P a capacity equal to maxq∈S dq

instead of
∑

q∈S dq can be installed for routing these
demands – resource savings thus increase with |P |. In
other words, SP allows to share backup resources and
therefore leads to a cheaper network when compared to
Dedicated Protection, which gives a reserved capacity to
every backup path.

Shared protection has been dealt with in Lisser et al.
[11], where an Analytic Center Cutting Plane method
(ACCPM) is presented for a multicommodity surviv-
able network design problem; several failure scenarios
which make the problem intractable are decomposed
through Lagrangian Relaxation. The design problem is
first solved on the whole topology G = (V,E), obtaining
the working capacity ce(G) to be installed on each edge
e ∈ E. Then, for each edge e ∈ E, the same problem is
solved on the |E| reduced graphs Ge′ obtained by elim-
inating e′ from E, thus finding a different value ce(Ge′)
of the capacity: this is the capacity needed to reroute
all demands in the event that e′ breaks. The capacity
for edge e is given by the maximum capacity over the
solved problems, max{ce(G),maxe′∈E ce(Ge′)}. In the
event of a failure, a re-routing might also be needed
for some traffic demands whose working path does not
contain any failed link.

Many multi-step heuristics have been proposed: Yuan
and Jue propose a shortest-path based heuristic for a
routing problem and test it over an NSFNet-like archi-
tecture; a comparison with dedicated protection shows
a remarkable cost improvement brought by shared pro-
tection. Mauz [13] describes an algorithm for allocating
shared capacity and solves a routing instance on the
PanEuropean Cost 239 architecture. Datta et al. [4] study
a pool-based channel reservation scheme, and Sengupta
and Ramamurthy [16] present a distributed algorithm for
path shareability. In these cases, the protection paths are
created after all working paths are given, thus not guar-
anteeing optimal shared protection design and routing.

Some preliminary tests we have made suggested that
embedding shared protection into an optimization model
may lead to very efficient use of the backup resource.
This encouraged us to study the problem of Shared
Protection Network Design Problem (SPNDP) that we
model in the next section.

III. AN INTEGER LINEAR PROGRAMMING MODEL

We are given a topology G = (V,E) and a set Q
of traffic demands (we also use the term commodity)
described by triplets (sq, tq, dq), q ∈ Q, standing for
the origin, destination, and traffic volume requested. The
solution is a subset of E with associated capacity such
that a routing of all demands is performed and the cost of
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the topology is minimum. We use notation e and {i, j}
when referring to edges, i and j being the endnodes of
e. The set of edges E induces a set A of oriented arcs,
defined as ordered node pairs: A = {(i, j) : {i, j} ∈ E}.
An arc oriented from i to j is denoted by (i, j). Each
edge e is associated a cable cost cd(e) and capacity cost
cc(e).

We use two classes of variables: ye is integer and
defines the capacity of edge e, and xe is binary and equal
to 1 if ye > 0. We assume that a capacity ye allocated on
edge e = {i, j} is sufficient to carry a flow not greater
than ye from i to j and another flow, at most equal to
ye, in the opposite direction, i.e. the same capacity is
installed on both directions. A constant λ represents the
amount of traffic carried by a single unit of capacity. An
upper bound Me for the traffic across edge e = {i, j} is
given by the maximum between two terms: the total de-
mand not ending in i and the total demand not ending in
j, hence M{i,j} = max

(∑
q∈Q:tq 6=i dq,

∑
q∈Q:tq 6=j dq

)
.

We require that flow be unsplit by using binary vari-
ables ϕqij to describe the working flow on each oriented
arc (i, j) for every demand q. The binary variable ψqij
identifies instead the backup data flow on arc (i, j) for
demand q. These classes of variables are subject to flow
conservation constraints, imposing a unitary unsplit flow
to follow a path from sq to tq. Moreover, link disjointness
must hold between working and backup flows.

In dedicated protection, the capacity to be allocated on
a certain edge {i, j} is proportional to the overall flow
from i to j, i.e.

∑
q∈Q dq(ϕ

q
ij+ψ

q
ij), and can be discerned

as working and backup capacity. When adopting Shared
Protection, the working capacity

∑
q∈Q dqϕ

q
ij does not

change but the backup capacity, which we denote with
ξij , may decrease, as previously pointed out. Let us
consider a failure on an edge {m,n} 6= {i, j}. The
capacity required by commodity q on (i, j) due to this
failure is equal to dq if and only if the working path of q
contains {m,n} and its backup path contains (i, j), that
is, formally:

(ϕqmn = 1 ∨ ϕqnm = 1) ∧ ψqij = 1 (1)

Notice that the two terms in parentheses are mutu-
ally exclusive. To deal with this expression, we intro-
duce continuous variables ϑq(i,j),{m,n} for each q ∈ Q,
{m,n} ∈ E and (i, j) ∈ A such that {i, j} 6= {m,n}.
ϑq(i,j),{m,n} is 1 if and only if commodity q needs to
route a backup flow on arc (i, j) in case of failure on
edge {m,n}, therefore (1) becomes:

ϑq(i,j),{m,n} ≥ ψ
q
ij + ϕqmn + ϕqnm − 1

A value for ξij can be found by considering every
condition of failure: the backup flow due to failure of

edge {m,n} is
∑

q∈Q dqϑ
q
(i,j),{m,n}, and the capacity

needed to cope with all possible failure situations is the
maximum over all edges (i.e., failures):

ξij = max
{m,n}6={i,j}

∑

q∈Q
dqϑ

q
(i,j),{m,n} (2)

Therefore, the capacity y{i,j} must suffice for the total
traffic under all failure situations:
∑

q∈Q
dq

(
ϕqij + ϑq(i,j),{m,n}

)
≤ λy{i,j} ∀{m,n} 6= {i, j}

We are now able to describe a model for SPNDP: the
sum of deployment and capacity costs

z =
∑

e∈E
(cd(e)xe + cc(e)ye)

is to be minimized subject to the constraints:
∑

j∈N(i)(ϕ
q
ij − ϕ

q
ji) = bqi ∀q ∈ Q, ∀i ∈ V (3)

∑
j∈N(i)(ψ

q
ij − ψ

q
ji) = bqi ∀q ∈ Q, ∀i ∈ V (4)

ye ≤Mexe ∀e ∈ E (5)

ϕqij + ϕqji + ψqij + ψqji ≤ x{i,j} ∀(i, j) ∈ A,∀q ∈ Q(6)

ψqij + ϕqmn + ϕqnm − 1 ≤ ϑq(i,j),{m,n}
∀(i, j) ∈ A,∀q ∈ Q
∀{m,n} 6= {i, j} (7)

∑

q∈Q
dq

(
ϕqij + ϑq(i,j),{m,n}

)
≤ λy{i,j}

∀(i, j) ∈ A
∀{m,n} 6= {i, j} (8)

ϕqij , ψ
q
ij ∈ {0, 1}

ϑq(i,j),{m,n} ∈ [0, 1]

x{i,j} ∈ {0, 1}
y{i,j} ∈ Z+

∀(i, j) ∈ A
∀q ∈ Q
∀{m,n} 6= {i, j},

(9)

where bqi =





1 if i = sq
−1 if i = tq

0 otherwise.
We minimize z enforcing flow conservation for vari-

ables ϕ and ψ in constraints (3) and (4). Constraint
(5) imposes that variable ye be positive only when the
corresponding variable xe is 1. As we use a different
class of variables for the backup flow, we need to ensure
link disjointness between working and backup flows on
all edges {i, j} ∈ E and for all q ∈ Q:

ϕqij + ψqij ≤ 1 ϕqij + ψqji ≤ 1

ϕqji + ψqij ≤ 1 ϕqji + ψqji ≤ 1

This is also true for oppositely oriented flows, as
the failure of edge {i, j} interrupts the data flow in
both directions. Intuition suggests us (but this can also
be proven) that in an efficient solution the flow of a
demand does not cross an edge in both directions, hence
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ϕqij + ϕqji ≤ 1 and ψqij + ψqji ≤ 1. These six inequalities
are clearly dominated by the clique inequality

ϕqij + ϕqji + ψqij + ψqji ≤ 1 (10)

Therefore, we obtain (6) by recalling that an edge e
has a positive flow only if the related variable xe is set to
1. Constraints (7) and (8) define shared protection, and
(9) specifies the type of all variables involved.

The problem just described is an integer capacitated
multicommodity network flow problem, where surviv-
ability constraints bound the network structure to be two-
connected. The NP-hardness of SPNDP can be hence
proved by reduction from the minimum-weight two-
connected spanning network problem [14].

Since in a solution to SPNDP the working and backup
paths are fixed and do not depend on the failed link,
the method proposed by Lisser et al. [11] gives a lower
bound under the assumption that the routing of any
demand may change even if the working path is not
affected by the failure.

The optimization model presented above has
O(|E|2|Q|) variables and constraints, or O(|V |6) if
we assume the demand and network topology to be
sufficiently dense. The impact of the model dimension
on the solution times has been observed in some
preliminary tests performed on small instances of
SPNDP, where even the LP relaxation of the model
required a large computational effort; for instance, on a
12-node, 37-link network, the best LP solver showed to
be CPLEX 7.0 Barrier optimizer, which has taken about
1h:20’ on a PC with a 600 MHz AMD processor.

The difficulty of SPNDP has also been pointed out by
Fischetti and Lodi [6], who have tackled an instance of
12 nodes with a novel approach called local branching.
The tough part of SPNDP seems to be SP constraints
(7) and (8), as many as O(|E|2|Q|) and using all of the
O(|E|2|Q|) continuous SP variables ϑ. However, very
few of these variables are non-null, hence in an optimal
solution few SP constraints are active.

IV. A NEW CLASS OF VALID INEQUALITIES

Several polyhedral approaches have been proposed for
network design problems [1], [3], [12], [17]; some of
them exploit some properties of multicommodity flow,
such as the minimum cut, to introduce valid inequalities
on the minimum capacity required on a subset of edges.
After introducing some additional notation, we present
two families of valid inequalities adopting this viewpoint.

Given a subset W of V , we call cut – and denote it
with δ(W ) – the set of edges with only one endpoint in
W , i.e. δ(W ) = {{i, j} ∈ E : i ∈ W, j /∈ W}. In the

following discussion, we use x(δ(W )) =
∑

e∈δ(W ) xe
and y(δ(W )) =

∑
e∈δ(W ) ye, and for each Q′ ⊆ Q,

d(Q′) =
∑

q∈Q′ dq. Moreover, we define the subset of
demands with source in W and destination in V \ W
by Q+(W ); similarly, the subset of demands originating
outside W and with destination in W is denoted as
Q−(W ). Therefore, the capacity across a cut δ(W )
must be at least the maximum of the traffic in the two
directions: d(δ(W )) = max(d(Q+(W )), d(Q−(W ))).

A topological property needed in path protected net-
works is 2-connectivity, i.e., if a traffic demand exists
between two nodes s and t there must be at least two
link-disjoint paths between them. This can be expressed
as an inequality over variables x, that define the network
structure. Namely, there must be at least two installed
edges on a cut δ(W ) dividing s from t, or:

x(δ(W )) ≥ 2 (11)

This valid inequality has been already proposed for
different survivable network design problems [17]. The
separation procedure takes as input the value x∗ of the
linear relaxation of an instance of SPNDP and looks
for the cut δ(W ) which minimizes x(δ(W )). This is
clearly given by the minimum cut over the graph G with
capacities given by x∗, provided that δ(W ) divides at
least one demand node pair. We employ the maximum
flow algorithm proposed by Gusfield [8] to obtain a
minimum cut x∗, hence solving the separation problem
in polynomial time.
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Fig. 2. Computing the capacity needed across a cut δ(W ).

The inequality we introduce now is specific to this
problem and has not been studied so far. Consider Fig. 2,
where a cut δ(W ) contains k edges e1, e2, . . . , ek. The
capacity needed to carry working flow across the cut is at
least dd(δ(W ))/λe. In order to compute a lower bound
on the backup capacity across δ(W ), we consider the
case where edges e1, e2, . . . ek−1 bear the working traffic
between the two shores. Link ek would then be used for
shared backup traffic, and the required backup capacity
would be no less than the maximum traffic borne on
edges e1, e2, . . . ek−1; this, in turn, can be approximated
from below by d(δ(W ))/(|δ(W )|−1). A better estimate
is given considering the actual number of edges installed
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on the cut, i.e. x(δ(W )). Hence, if the working traffic
flows through all edges in the cut except one and the
backup traffic occupies the remaining edge, the minimum
capacity is given by (we use x(δ) and d(δ) instead of
x(δ(W )) and d(δ(W )) for better readability)

1

λ

(
d(δ) +

d(δ)

x(δ) − 1

)
=
d(δ)

λ
· x(δ)

x(δ)− 1
(12)

If the working traffic is carried through fewer edges of
the cuts, the estimated backup capacity increases as d(δ)
is divided by a smaller quantity. Finally, if the working
traffic flows through all edges in the cut, the backup
capacity must be installed on at least two edges eh, ej
to ensure connectivity in the event that either of them
fails; however, the capacity on each edge is bounded
from below by d(δ)/x(δ), thus giving a lower bound of
d(δ)
λ (1 + 2/x(δ), no smaller than the lower bound (12)

if x(δ) ≥ 2. Therefore, (12) represents a lower bound
for the capacity to be installed on δ and we may write
the valid inequality

y(δ) ≥ d(δ)

λ
· x(δ)

x(δ) − 1
(13)

As the right hand side of this inequality is non-linear,
we look for a linear approximation in the neighbourhood
of a solution x∗(δ) to a linear relaxation of the problem.
First, notice that the function f(xe, e ∈ δ) = x(δ)

x(δ)−1

is non-concave for all xe ∈ R+ in that ∂2f
∂xe1∂xe2

=

2/(x(δ) − 1)3 ∀e1, e2 ∈ E and hence its Hessian is
positive semidefinite. Thus we can approximate f from
below with the linear function:

f(xe, e ∈ δ) ≈ f(x∗e, e ∈ δ) +
∑

e∈δ

∂f

∂xe
(xe − x∗e) =

=
x∗(δ)

x∗(δ) − 1
− x(δ) − x∗(δ)

(x∗(δ) − 1)2
=

(x∗(δ))2

(x∗(δ)− 1)2
− x(δ)

(x∗(δ) − 1)2

and write a lower bound to the capacity across the cut:

y(δ) ≥ d(δ)

λ

(
(x∗(δ))2

(x∗(δ) − 1)2
− x(δ)

(x∗(δ)− 1)2

)

Rounding the coefficients through the Chvátal-
Gomory procedure yields the shared cut-set inequality:

y(δ) ≥
⌈
d(δ)(x∗(δ))2

λ(x∗(δ) − 1)2

⌉
−
⌈

d(δ)

λ(x∗(δ) − 1)2

⌉
x(δ) (14)

As the right hand side in (14) is a linear approximation
of that in (13), the set of inequalities (14) for a given
cut δ(W ) define a polyhedron containing the set of
points satisfying (13). As a separation method, we take

a solution (x∗, y∗) to a linear relaxation of the problem
and look for a cut δ(W ) maximizing the violation; to
this purpose we solve a maximum-flow problem on a
graph G′ whose capacity on edge e is equal to yexe, so
as to privilege those cuts with low values of xe.

As we have no guarantees on the value of x(δ(W )),
once we find this cut we insert the inequality (14) only
if x∗(δ(W )) ≥ 2, i.e. if (11) holds; otherwise, we insert
(11) for δ(W ) and the implied valid inequality (14)

y(δ(W )) ≥ d4d(δ(W ))/λe − dd(δ(W ))/λe x(δ(W ))

These inequalities do not include any of the commod-
ity variables ϕ, ψ, ϑ, and can be used in a decomposition
paradigm as the one we devise in the next section.

V. BOUNDING SPNDP WITH LAGRANGIAN

RELAXATION

We have applied Lagrangian Relaxation (the reader
may refer to [10] for a complete overview) to bound SP-
NDP from below. If the right-hand side of (6) changes
to 1, the model is easily decomposed into |Q| + 1
subproblems. Constraints (8) are relaxed and put into
the objective function and the Lagrangian function is:

ž(π) = min

{ ∑

{i,j}∈E

(
cd({i, j})x{i,j} + cc({i, j})y{i,j}

)
+

+
∑

(i,j)∈A

∑

{m,n}6={i,j}
π
{m,n}
(i,j)

(∑

q∈Q
dq

(
ϕqij + ϑq(i,j),{m,n}

)
+

−λy{i,j}
)

: (3, 4, 5, 10, 7)

}
=

= min

{ ∑

{i,j}∈E

(
cd({i, j})x{i,j}+

+
(
cc({i, j}) − λ

∑
{m,n}6={i,j}

(
π
{m,n}
(i,j) + π

{m,n}
(j,i)

))
y{i,j}

)
+

+
∑

(i,j)∈A

∑

{m,n}6={i,j}
π
{m,n}
(i,j)

∑

q∈Q
dq

(
ϕqij + ϑq(i,j),{m,n}

)
:

(3, 4, 5, 10, 7)

}
=

= min
{
L0(x,y, π) +

∑

q∈Q
dqLq(ϕ, ϑ, π) : (3, 4, 5, 10, 7)

}
.

We notice that functions L0 and all Lq’s depend on
pairwise disjoint sets of variables, leading to a decom-
position of the problem into a topology subproblem P0,
with objective function ž0(π) = L0(π); and one flow
subproblem Pq for each commodity q, with objective
žq(π) = Lq(π). The single topology subproblem de-
pends on variables x{i,j}, y{i,j} and on non-negative mul-
tipliers π, while each flow subproblem Pq has a single-
commodity set of variables (ϕ,ψ, ϑ) that we can denote
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without index q. Recalling that each flow subproblem
is uniquely identified by the node pair (sq, tq), we can
reformulate the Lagrangian Relaxation of our problem
as

ž(π) = min{L0(x,y, π) : (5)}
+

∑
q∈Q dq min{Lq(ϕ, ϑ, π) : (3, 4, 10, 7)}

Therefore, a lower bound to the solution of an instance
of SPNDP is given by maxπ≥0 ž(π).

A. The topology subproblem

Let us consider the single topology subproblem

min ž0(π) =
{∑

{i,j}∈E
(
cd({i, j})x{i,j}+

+c̄c({i, j})y{i,j}
)

: ye ≤Mexe ∀e ∈ E
} (15)

As flow variables have been dropped with the re-
laxation of constraint (8), we are left with a trivial
optimization problem only constrained by (5). Variables
y{i,j} appear in the objective function with coefficient

c̄c({i, j}) = cc({i, j})−λ
∑

{m,n}6={i,j}

(
π
{m,n}
(i,j) + π

{m,n}
(j,i)

)

hence for all edges e = {i, j}, in optimal solution one
has xe = 1 and ye = Me if cd(e) + Mec̄(e) < 0, and
xe = ye = 0 otherwise. The valid inequalities introduced
in the previous section are therefore of great help in
improving the lower bound.

B. The flow subproblems

The Lagrangian Relaxation breaks the main problem
into |Q| single-commodity minimization subproblems
with objective function (we drop indices q here)

žq(π) =
∑

(i,j)∈A

∑

{m,n}6={i,j}
π
{m,n}
(i,j)

(
ϕij + ϑ(i,j),{m,n}

)

to be minimized subject to
∑

j∈N(i)(ϕij − ϕji) = bqi ∀i ∈ V (16)
∑

j∈N(i)(ψij − ψji) = bqi ∀i ∈ V (17)

ϕij + ϕji + ψij + ψji ≤ 1 ∀(i, j) ∈ A (18)

ψij + ϕmn + ϕnm − 1 ≤ ϑ(i,j),{m,n} (19)

∀(i, j) ∈ A,∀{m,n} 6= {i, j}
ϕij , ψij , ϑ(i,j),{m,n} ∈ [0, 1] (20)

∀(i, j) ∈ A, ∀{m,n} 6= {i, j}

After relaxing integrality of variables ϕ and ψ, these
subproblems are easily solved by an LP solver, even for
large instances of SPNDP.

C. A bundle method for SPNDP
The decomposition approach we have exposed allows

to obtain, given a set of non-negative multipliers π, a
value of ž(π) in a reasonable time, and this gives us the
possibility to use, for example, a subgradient technique
to obtain a lower bound of SPNDP. Many approaches
are available for maximizing ž(π), viz. subgradient, cut-
ting planes, ACCPM; we have adopted a bundle method
(Frangioni 1997) suited to this particular problem. We
use a C++ library and link it with the implementation of
an oracle method for computing the value of L0(π) +∑

q∈Q dqLq(π) given a set of multiplicators π.
As the bundle optimization begins, the topology sub-

problem contains only constraints (5); for each call to
the oracle, the quantity L(π) = L0(π) +

∑
q∈Q dqLq(π)

is calculated by solving the topology subproblem and
all flow subproblems. After solving the former, we look
for inequalities (11) and (14) violated by the current
solution and insert them. The next call to the oracle has
a strengthened subproblem and can therefore obtain a
better lower bound of SPNDP.

VI. COMPUTATIONAL RESULTS

Optimization methods often find their toughest test
bed on real-world problems; we have chosen to apply our
algorithms to some real topologies and traffic demands,
so as to obtain a complete overview of their efficiency.
A computer equipped with a single Athlon 600 Mhz
processor and 768 MB of memory has been used for
all tests. The operating system is Linux, kernel 2.4.7-10;
we have written our code in ANSI C and compiled it
with Gnu gcc 2.95.3 with compile option -O. We have
used Cplex 7.0 callable library; the C implementation of
Hao-Orlin and Gusfield methods used in the separation
procedures described in section IV is available on line.

All the instances solved in our computational tests
are real world networks found in the literature (e.g.
Barnhart, Hane, and Vance (2000), Mauz (2001)) and
can be downloaded from the ftp site of the Department
of Electronics and Information of Politecnico di Milano:

ftp://ftp.elet.polimi.it/users/Pietro.Belotti/mcf/data

All files are in a DIMACS-like format (see reference),
containing for each network problem the topology and
the traffic demands. We report here the results obtained
by applying the bundle algorithm described in section V.
For each instance we have let the bundle perform 100
iterations and posed a time limit of 3600 s. We have not
attempted to solve the whole ILP model; as we know, in
most cases it requires a huge computational effort and for
all but two instances it has not been possible to compute
even the linear relaxation of the model.
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The results are shown in table I; for each instance, we
report its size and three lower bounds, obtained respec-
tively through CPLEX MIP solver (z(mip)), our method
without cut-set inequalities (z(lr)) and our method with
separation of cut-set inequalities (z(lr + vi)). Each of
these algorithms has been allowed a time limit of 3600
s. We also report in column z(heur) an upper bound
to the network cost obtained by a simple rounding-and-
rerouting heuristic, so as to evaluate the accuracy of our
method. Moreover, we have solved the design problem
with dedicated protection (the network cost is displayed
in column z(dp)) in order to compare the cost savings
when adopting Shared Protection. Finally, the last two
columns contain the number of valid inequalities (11)
and (14) inserted between each call to the oracle.

It is apparent that our Lagrangian approach with the
insertion of cut-set inequalities outperforms the other
methods in almost all cases. It is worth to insert valid
inequalities to improve the lower bound as their sepa-
ration routines are very simple and fast. In most cases,
with the given time limit CPLEX could not even solve
the LP relaxation; as a lower bound we have therefore
used the best solution from the dual simplex method.

The upper bound computed by our simple rounding
heuristic gives an idea of the substantial savings in
the cost of a network that adopts Shared Protection.
It is not our aim to present an efficient heuristic for
SP network design, yet we feel that a stronger upper
bounding approach would obtain very cheap networks
and give a good measure of accuracy of our Lagrangian
approach, whose main feature is to decompose an ILP
problem with a huge number of variables and constraints.

VII. CONCLUSIONS

Shared Protection is definitely of some help in re-
ducing the cost of a topology. Our tests on real-world
instances show that in some cases the overall cost can be
greatly reduced if shared protection is considered as part
of the optimization process. However, modelling even
simple instances leads to a huge ILP model which is
hardly tractable even when considering its LP relaxation.
We have obtained good lower bounds by means of a
technique that decomposes an instance to handle it more
efficiently and finds tighter bounds of the problem.

Although we have restricted our attention to single-
fault protection, the more general case of 1:k SP, where
the resulting network is tolerant to k simultaneous link
failures, is also of interest from a modelling point of
view, given the complexity of its simplest version. Some
research is currently under way for the quadratic, non-
separable min-cost flow problem that builds up part of
the decomposed problem shown in section V.
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[3] D. Bienstock, Oktay Günlük. (1996). “Capacitated network
design – polyhedral structure and computation,” INFORMS
Journal on Computing 8, 243-259.

[4] S. Datta, S. Sengupta, S. Biswas, S. Datta, “Efficient channel
reservation for backup paths in optical mesh networks,” IEEE
Globecom, San Antonio (TX), November 2001.

[5] DIMACS network file format. Specification available on line
at ftp://dimacs.rutgers.edu/pub/netflow/general-info/specs.tex

[6] M. Fischetti, A. Lodi, “Local Branching,” Technical Report
OR/02/6, DEIS – Università di Bologna, 2002.
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Name |V | |E| |Q| z(mip) z(lr) z(lr + vi) z(heur) z(dp) n11 n14

bhv1 14 19 70 54869.2 53027.6 59129.1 72169 74560 0 59
bhv2 24 28 136 144160.1 137671.1 165798.3 213461 267236 0 136
bhv3 29 62 140 23072.7 116471.1 120492.8 263080 349838 16 105
bhv4 18 30 116 40644.2 76342.1 84909.5 118618 118618 5 226
bhv5 19 27 94 47096.1 85759.6 90144.4 145342 146324 6 189
bhv6 27 39 186 123410.7 169288.1 191273.4 241218 255329 0 100
bhv7 23 33 186 71233.6 131913.6 156885.8 224725 233196 1 71
bhv8 28 35 82 93086.0 129881.1 146702.9 192015 207789 0 168
bhv9 24 43 174 37146.5 109442.6 119044.2 204631 230441 29 149
bhva 19 23 82 83223.7 79884.0 86361.5 101760 114482 0 96
arpa2 5 21 26 19 7877.0 4824.0 4824.0 10987 11632 3 62
arpa2 25 21 26 94 4926.9 3672.3 3715.3 7755 8559 3 207
arpa2 99 21 26 417 2592.7 3649.9 3649.9 6702 7888 3 131
arpanet 5 24 50 21 3431.4 6094.1 10632.2 20661 20747 30 320
arpanet 25 24 50 127 4503.1 6176.1 14628.6 21650 22654 26 367
arpanet 99 24 50 544 – 6604.3 7494.2 19840 21493 37 204
cost239 11 22 110 6545.0 5060.5 5517.3 9999 13107 9 116
eon 5 19 37 16 7562.5 4292.2 7819.3 13103 13786 31 193
eon 25 19 37 82 2521.1 4359.8 5504.3 9635 9635 31 179
eon 99 19 37 339 1585.1 4045.6 5182.1 8025 10635 30 152
metro 11 42 25 195.6 309.8 341.8 567 567 12 17
njlata 5 11 23 5 10947.3 9896.1 8208.8 11000 16849 11 44
njlata 25 11 23 29 6962.3 7655.4 7988.4 10761 10761 10 35
njlata 99 11 23 110 5094.9 7403.5 8097.5 11235 11235 16 48
nsf1a 14 21 174 63972.7 160512.9 160512.9 457540 488382 7 18
nsf1b 14 21 150 104210.0 235069.3 359526.5 676490 746423 6 38
nsf2 14 22 108 19278.3 22898.1 29612.6 52250 56440 17 74
pacbell 5 15 21 16 11187.0 7054.2 9234.9 14088 15451 0 42
pacbell 25 15 21 44 4534.0 3460.1 4377.7 6223 6223 0 78
pacbell 99 15 21 206 3008.8 3249.1 3791.5 5466 5466 0 80
toronto 5 25 55 32 388.9 2232.1 2248.8 5126 6060 25 54
toronto 25 25 55 151 254.0 1671.0 1866.1 4577 6845 21 47
usld 5 28 45 30 – 12329.0 22401.9 40019 40019 27 193
usld 25 28 45 165 – 16309.9 18690.2 41387 49163 29 50

TABLE I
COMPARISON OF LOWER BOUNDING METHODS AND OF NETWORK COSTS FOR DIFFERENT PROTECTION SCHEMES ON REAL-WORLD

INSTANCES.


